12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Cancer Therapy-Related Clonal Hematopoiesis Driver Gene Ppm1d Promotes Inflammation and Non-Ischemic Heart Failure in Mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Supplemental Digital Content is available in the text.

          Rationale:

          Cancer therapy can be associated with short- and long-term cardiac dysfunction. Patients with cancer often exhibit therapy-related clonal hematopoiesis (t-CH), an aggressive form of clonal hematopoiesis that can result from somatic mutations in genes encoding regulators of the DNA-damage response (DDR) pathway. Gain-of-function mutations in exon 6 of the protein phosphatase Mg2+/Mn2+ dependent 1D ( PPM1D) gene are the most frequently mutated DNA-damage response gene associated with t-CH. Whether t-CH can contribute to cardiac dysfunction is unknown.

          Objective:

          We evaluated the causal and mechanistic relationships between Ppm1d-mediated t-CH and nonischemic heart failure in an experimental system.

          Methods and Results:

          To test whether gain-of-function hematopoietic cell mutations in Ppm1d can increase susceptibility to cardiac stress, we evaluated cardiac dysfunction in a mouse model where clonal hematopoiesis-associated mutations in exon 6 of Ppm1d were produced by CRISPR-Cas9 technology. Mice transplanted with hematopoietic stem cells containing the mutated Ppm1d gene exhibited augmented cardiac remodeling following the continuous infusion of Ang II (angiotensin II). Ppm1d-mutant macrophages were impaired in DDR pathway activation and displayed greater DNA damage, higher reactive oxygen species generation, and an augmented proinflammatory profile with elevations in IL (interleukin)-1β and IL-18. The administration of an NLRP3 (NLR family pyrin domain containing 3) inflammasome inhibitor to mice reversed the cardiac phenotype induced by the Ppm1d-mutated hematopoietic stem cells under conditions of Ang II–induced stress.

          Conclusions:

          A mouse model of Ppm1d-mediated t-CH was more susceptible to cardiac stress. Mechanistically, disruption of the DDR pathway led to elevations in inflammatory cytokine production, and the NLRP3 inflammasome was shown to be essential for this augmented cardiac stress response. These data indicate that t-CH involving activating mutations in PPM1D can contribute to the cardiac dysfunction observed in cancer survivors, and that anti-inflammatory therapy may have utility in treating this condition.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          The NLRP3 inflammasome: molecular activation and regulation to therapeutics

          NLRP3 (NACHT, LRR and PYD domains-containing protein 3) is an intracellular sensor that detects a broad range of microbial motifs, endogenous danger signals and environmental irritants, resulting in the formation and activation of the NLRP3 inflammasome. Assembly of the NLRP3 inflammasome leads to caspase-1-dependent release of the proinflammatory cytokines, IL-1β and IL-18, as well as to gasdermin D-mediated pyroptotic cell death. Recent studies have revealed new regulators of the NLRP3 inflammasome, including new interacting or regulatory proteins, metabolic pathways and a regulatory mitochondrial hub. In this Review, we present the molecular, cell biological and biochemical basis of NLRP3 activation and regulation, and describe how this mechanistic understanding is leading to potential therapeutics that target the NLRP3 inflammasome.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Age-related clonal hematopoiesis associated with adverse outcomes.

            The incidence of hematologic cancers increases with age. These cancers are associated with recurrent somatic mutations in specific genes. We hypothesized that such mutations would be detectable in the blood of some persons who are not known to have hematologic disorders. We analyzed whole-exome sequencing data from DNA in the peripheral-blood cells of 17,182 persons who were unselected for hematologic phenotypes. We looked for somatic mutations by identifying previously characterized single-nucleotide variants and small insertions or deletions in 160 genes that are recurrently mutated in hematologic cancers. The presence of mutations was analyzed for an association with hematologic phenotypes, survival, and cardiovascular events. Detectable somatic mutations were rare in persons younger than 40 years of age but rose appreciably in frequency with age. Among persons 70 to 79 years of age, 80 to 89 years of age, and 90 to 108 years of age, these clonal mutations were observed in 9.5% (219 of 2300 persons), 11.7% (37 of 317), and 18.4% (19 of 103), respectively. The majority of the variants occurred in three genes: DNMT3A, TET2, and ASXL1. The presence of a somatic mutation was associated with an increase in the risk of hematologic cancer (hazard ratio, 11.1; 95% confidence interval [CI], 3.9 to 32.6), an increase in all-cause mortality (hazard ratio, 1.4; 95% CI, 1.1 to 1.8), and increases in the risks of incident coronary heart disease (hazard ratio, 2.0; 95% CI, 1.2 to 3.4) and ischemic stroke (hazard ratio, 2.6; 95% CI, 1.4 to 4.8). Age-related clonal hematopoiesis is a common condition that is associated with increases in the risk of hematologic cancer and in all-cause mortality, with the latter possibly due to an increased risk of cardiovascular disease. (Funded by the National Institutes of Health and others.).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia.

              Many mutations that contribute to the pathogenesis of acute myeloid leukemia (AML) are undefined. The relationships between patterns of mutations and epigenetic phenotypes are not yet clear. We analyzed the genomes of 200 clinically annotated adult cases of de novo AML, using either whole-genome sequencing (50 cases) or whole-exome sequencing (150 cases), along with RNA and microRNA sequencing and DNA-methylation analysis. AML genomes have fewer mutations than most other adult cancers, with an average of only 13 mutations found in genes. Of these, an average of 5 are in genes that are recurrently mutated in AML. A total of 23 genes were significantly mutated, and another 237 were mutated in two or more samples. Nearly all samples had at least 1 nonsynonymous mutation in one of nine categories of genes that are almost certainly relevant for pathogenesis, including transcription-factor fusions (18% of cases), the gene encoding nucleophosmin (NPM1) (27%), tumor-suppressor genes (16%), DNA-methylation-related genes (44%), signaling genes (59%), chromatin-modifying genes (30%), myeloid transcription-factor genes (22%), cohesin-complex genes (13%), and spliceosome-complex genes (14%). Patterns of cooperation and mutual exclusivity suggested strong biologic relationships among several of the genes and categories. We identified at least one potential driver mutation in nearly all AML samples and found that a complex interplay of genetic events contributes to AML pathogenesis in individual patients. The databases from this study are widely available to serve as a foundation for further investigations of AML pathogenesis, classification, and risk stratification. (Funded by the National Institutes of Health.).
                Bookmark

                Author and article information

                Contributors
                Journal
                Circ Res
                Circ Res
                RES
                Circulation Research
                Lippincott Williams & Wilkins (Hagerstown, MD )
                0009-7330
                1524-4571
                28 July 2021
                03 September 2021
                : 129
                : 6
                : 684-698
                Affiliations
                [1 ]Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA (Y.Y., E.M.-Y., K.-D.M., N.C., A.H.P., H.O., K.H., H.D., M.A.E., M.S., Y.W., S.S., K.W.).
                [2 ]Now with Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Yada, Japan (Y.K.).
                [3 ]Department of Cardiology, Xinqiao Hospital, Army Medical University, Chongqing, China (Y.W.).
                [4 ]Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom (K.B., G.P., G.V., A.F.D.).
                [5 ]Now with Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, Germany (G.P.).
                [6 ]Wellcome-MRC Cambridge Stem Cell Institute, Department of Haematology, University of Cambridge, United Kingdom (A.F.D., G.V.).
                [7 ]Now with Department of Cardiology, Osaka City University Graduate School of Medicine, Japan (S.S.).
                Author notes
                Correspondence to: Kenneth Walsh, PhD, Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, 415 Ln Rd, Charlottesville, VA. Email kw9ar@ 123456virginia.edu
                Article
                00010
                10.1161/CIRCRESAHA.121.319314
                8409899
                34315245
                0ffc6327-41c0-4c63-82ae-a97519b61747
                © 2021 The Authors.

                Circulation Research is published on behalf of the American Heart Association, Inc., by Wolters Kluwer Health, Inc. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution, and reproduction in any medium, provided that the original work is properly cited.

                This article is made available via the PMC Open Access Subset for unrestricted re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the COVID-19 pandemic or until permissions are revoked in writing. Upon expiration of these permissions, PMC is granted a perpetual license to make this article available via PMC and Europe PMC, consistent with existing copyright protections.

                History
                : 1 April 2021
                : 20 July 2021
                : 26 July 2021
                Categories
                10012
                10014
                10030
                10094
                10196
                Original Research
                Custom metadata
                TRUE
                T

                cardiotoxicity,clonal hematopoiesis,crispr-cas systems,dna damage,heart failure,inflammasome,macrophages

                Comments

                Comment on this article