5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Association of Clonal Hematopoiesis of Indeterminate Potential with Worse Kidney Function and Anemia in Two Cohorts of Patients with Advanced Chronic Kidney Disease

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Clonal hematopoiesis of indeterminate potential (CHIP) is an inflammatory premalignant disorder resulting from acquired genetic mutations in hematopoietic stem cells. This condition is common in aging populations and associated with cardiovascular morbidity and overall mortality, but its role in CKD is unknown.

          Methods

          We performed targeted sequencing to detect CHIP mutations in two independent cohorts of 87 and 85 adults with an eGFR<60 ml/min per 1.73m 2. We also assessed kidney function, hematologic, and mineral bone disease parameters cross-sectionally at baseline, and collected creatinine measurements over the following 5-year period.

          Results

          At baseline, CHIP was detected in 18 of 87 (21%) and 25 of 85 (29%) cohort participants. Participants with CHIP were at higher risk of kidney failure, as predicted by the Kidney Failure Risk Equation (KFRE), compared with those without CHIP. Individuals with CHIP manifested a 2.2-fold increased risk of a 50% decline in eGFR or ESKD over 5 years of follow-up (hazard ratio 2.2; 95% confidence interval, 1.2 to 3.8) in a Cox proportional hazard model adjusted for age, sex, and baseline eGFR. The addition of CHIP to 2-year and 5-year calibrated KFRE risk models improved ESKD predictions. Those with CHIP also had lower hemoglobin, higher ferritin, and higher red blood cell mean corpuscular volume versus those without CHIP.

          Conclusions

          In this exploratory analysis of individuals with preexisting CKD, CHIP was associated with higher baseline KFRE scores, greater progression of CKD, and anemia. Further research is needed to define the nature of the relationship between CHIP and kidney disease progression.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Age-related clonal hematopoiesis associated with adverse outcomes.

          The incidence of hematologic cancers increases with age. These cancers are associated with recurrent somatic mutations in specific genes. We hypothesized that such mutations would be detectable in the blood of some persons who are not known to have hematologic disorders. We analyzed whole-exome sequencing data from DNA in the peripheral-blood cells of 17,182 persons who were unselected for hematologic phenotypes. We looked for somatic mutations by identifying previously characterized single-nucleotide variants and small insertions or deletions in 160 genes that are recurrently mutated in hematologic cancers. The presence of mutations was analyzed for an association with hematologic phenotypes, survival, and cardiovascular events. Detectable somatic mutations were rare in persons younger than 40 years of age but rose appreciably in frequency with age. Among persons 70 to 79 years of age, 80 to 89 years of age, and 90 to 108 years of age, these clonal mutations were observed in 9.5% (219 of 2300 persons), 11.7% (37 of 317), and 18.4% (19 of 103), respectively. The majority of the variants occurred in three genes: DNMT3A, TET2, and ASXL1. The presence of a somatic mutation was associated with an increase in the risk of hematologic cancer (hazard ratio, 11.1; 95% confidence interval [CI], 3.9 to 32.6), an increase in all-cause mortality (hazard ratio, 1.4; 95% CI, 1.1 to 1.8), and increases in the risks of incident coronary heart disease (hazard ratio, 2.0; 95% CI, 1.2 to 3.4) and ischemic stroke (hazard ratio, 2.6; 95% CI, 1.4 to 4.8). Age-related clonal hematopoiesis is a common condition that is associated with increases in the risk of hematologic cancer and in all-cause mortality, with the latter possibly due to an increased risk of cardiovascular disease. (Funded by the National Institutes of Health and others.).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            New Creatinine- and Cystatin C–Based Equations to Estimate GFR without Race

            Current equations for estimated glomerular filtration rate (eGFR) that use serum creatinine or cystatin C incorporate age, sex, and race to estimate measured GFR. However, race in eGFR equations is a social and not a biologic construct.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence.

              Cancers arise from multiple acquired mutations, which presumably occur over many years. Early stages in cancer development might be present years before cancers become clinically apparent. We analyzed data from whole-exome sequencing of DNA in peripheral-blood cells from 12,380 persons, unselected for cancer or hematologic phenotypes. We identified somatic mutations on the basis of unusual allelic fractions. We used data from Swedish national patient registers to follow health outcomes for 2 to 7 years after DNA sampling. Clonal hematopoiesis with somatic mutations was observed in 10% of persons older than 65 years of age but in only 1% of those younger than 50 years of age. Detectable clonal expansions most frequently involved somatic mutations in three genes (DNMT3A, ASXL1, and TET2) that have previously been implicated in hematologic cancers. Clonal hematopoiesis was a strong risk factor for subsequent hematologic cancer (hazard ratio, 12.9; 95% confidence interval, 5.8 to 28.7). Approximately 42% of hematologic cancers in this cohort arose in persons who had clonality at the time of DNA sampling, more than 6 months before a first diagnosis of cancer. Analysis of bone marrow-biopsy specimens obtained from two patients at the time of diagnosis of acute myeloid leukemia revealed that their cancers arose from the earlier clones. Clonal hematopoiesis with somatic mutations is readily detected by means of DNA sequencing, is increasingly common as people age, and is associated with increased risks of hematologic cancer and death. A subset of the genes that are mutated in patients with myeloid cancers is frequently mutated in apparently healthy persons; these mutations may represent characteristic early events in the development of hematologic cancers. (Funded by the National Human Genome Research Institute and others.).
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Journal of the American Society of Nephrology
                JASN
                American Society of Nephrology (ASN)
                1046-6673
                1533-3450
                February 23 2022
                : ASN.2021060774
                Article
                10.1681/ASN.2021060774
                35197325
                1054cb1a-e576-4865-9b37-e3597c210da6
                © 2022
                History

                Comments

                Comment on this article