99
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      DNorm: disease name normalization with pairwise learning to rank

      research-article
      1 , 2 , 1 , 1 , *
      Bioinformatics
      Oxford University Press

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Motivation: Despite the central role of diseases in biomedical research, there have been much fewer attempts to automatically determine which diseases are mentioned in a text—the task of disease name normalization (DNorm)—compared with other normalization tasks in biomedical text mining research.

          Methods: In this article we introduce the first machine learning approach for DNorm, using the NCBI disease corpus and the MEDIC vocabulary, which combines MeSH® and OMIM. Our method is a high-performing and mathematically principled framework for learning similarities between mentions and concept names directly from training data. The technique is based on pairwise learning to rank, which has not previously been applied to the normalization task but has proven successful in large optimization problems for information retrieval.

          Results: We compare our method with several techniques based on lexical normalization and matching, MetaMap and Lucene. Our algorithm achieves 0.782 micro-averaged F-measure and 0.809 macro-averaged F-measure, an increase over the highest performing baseline method of 0.121 and 0.098, respectively.

          Availability: The source code for DNorm is available at http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/DNorm, along with a web-based demonstration and links to the NCBI disease corpus. Results on PubMed abstracts are available in PubTator: http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/PubTator

          Contact: zhiyong.lu@ 123456nih.gov

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          PubTator: a web-based text mining tool for assisting biocuration

          Manually curating knowledge from biomedical literature into structured databases is highly expensive and time-consuming, making it difficult to keep pace with the rapid growth of the literature. There is therefore a pressing need to assist biocuration with automated text mining tools. Here, we describe PubTator, a web-based system for assisting biocuration. PubTator is different from the few existing tools by featuring a PubMed-like interface, which many biocurators find familiar, and being equipped with multiple challenge-winning text mining algorithms to ensure the quality of its automatic results. Through a formal evaluation with two external user groups, PubTator was shown to be capable of improving both the efficiency and accuracy of manual curation. PubTator is publicly available at http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/PubTator/.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            PubMed and beyond: a survey of web tools for searching biomedical literature

            Zhiyong Lu (2011)
            The past decade has witnessed the modern advances of high-throughput technology and rapid growth of research capacity in producing large-scale biological data, both of which were concomitant with an exponential growth of biomedical literature. This wealth of scholarly knowledge is of significant importance for researchers in making scientific discoveries and healthcare professionals in managing health-related matters. However, the acquisition of such information is becoming increasingly difficult due to its large volume and rapid growth. In response, the National Center for Biotechnology Information (NCBI) is continuously making changes to its PubMed Web service for improvement. Meanwhile, different entities have devoted themselves to developing Web tools for helping users quickly and efficiently search and retrieve relevant publications. These practices, together with maturity in the field of text mining, have led to an increase in the number and quality of various Web tools that provide comparable literature search service to PubMed. In this study, we review 28 such tools, highlight their respective innovations, compare them to the PubMed system and one another, and discuss directions for future development. Furthermore, we have built a website dedicated to tracking existing systems and future advances in the field of biomedical literature search. Taken together, our work serves information seekers in choosing tools for their needs and service providers and developers in keeping current in the field. Database URL: http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/search
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Overview of BioCreAtIvE: critical assessment of information extraction for biology

              Background The goal of the first BioCreAtIvE challenge (Critical Assessment of Information Extraction in Biology) was to provide a set of common evaluation tasks to assess the state of the art for text mining applied to biological problems. The results were presented in a workshop held in Granada, Spain March 28–31, 2004. The articles collected in this BMC Bioinformatics supplement entitled "A critical assessment of text mining methods in molecular biology" describe the BioCreAtIvE tasks, systems, results and their independent evaluation. Results BioCreAtIvE focused on two tasks. The first dealt with extraction of gene or protein names from text, and their mapping into standardized gene identifiers for three model organism databases (fly, mouse, yeast). The second task addressed issues of functional annotation, requiring systems to identify specific text passages that supported Gene Ontology annotations for specific proteins, given full text articles. Conclusion The first BioCreAtIvE assessment achieved a high level of international participation (27 groups from 10 countries). The assessment provided state-of-the-art performance results for a basic task (gene name finding and normalization), where the best systems achieved a balanced 80% precision / recall or better, which potentially makes them suitable for real applications in biology. The results for the advanced task (functional annotation from free text) were significantly lower, demonstrating the current limitations of text-mining approaches where knowledge extrapolation and interpretation are required. In addition, an important contribution of BioCreAtIvE has been the creation and release of training and test data sets for both tasks. There are 22 articles in this special issue, including six that provide analyses of results or data quality for the data sets, including a novel inter-annotator consistency assessment for the test set used in task 2.
                Bookmark

                Author and article information

                Journal
                Bioinformatics
                Bioinformatics
                bioinformatics
                bioinfo
                Bioinformatics
                Oxford University Press
                1367-4803
                1367-4811
                15 November 2013
                21 August 2013
                21 August 2013
                : 29
                : 22
                : 2909-2917
                Affiliations
                1National Center for Biotechnology Information, 8600 Rockville Pike, Bethesda, MD 20894, USA and 2Department of Biomedical Informatics, Arizona State University, 13212 East Shea Blvd, Scottsdale, AZ 85259, USA
                Author notes
                *To whom correspondence should be addressed.

                Associate Editor: Jonathan Wren

                Article
                btt474
                10.1093/bioinformatics/btt474
                3810844
                23969135
                0ebc0bb6-0743-470a-9707-10518a490258
                © The Author 2013. Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 13 March 2013
                : 8 August 2013
                : 9 August 2013
                Page count
                Pages: 9
                Categories
                Original Papers
                Data and Text Mining

                Bioinformatics & Computational biology
                Bioinformatics & Computational biology

                Comments

                Comment on this article