5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Safety and long-term immunogenicity of the two-dose heterologous Ad26.ZEBOV and MVA-BN-Filo Ebola vaccine regimen in adults in Sierra Leone: a combined open-label, non-randomised stage 1, and a randomised, double-blind, controlled stage 2 trial

      research-article
      , PhD, , PhD , , PhD , FWACP, , PhD , MSc, , MD, , MSc , MSc , MSc, , PhD, , MA, , MSc, , BSc, , BSc , MPH, , MSc, , PhD, , FWACP, , PhD, , PhD, , MD, , PhD , PhD, , PhD , PhD, , PhD, , MD, , MD , MD, , MD, , MD, , PhD
      The Lancet. Infectious diseases

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Background

          The Ebola epidemics in west Africa and the Democratic Republic of the Congo highlight an urgent need for safe and effective vaccines to prevent Ebola virus disease. We aimed to assess the safety and long-term immunogenicity of a two-dose heterologous vaccine regimen, comprising the adenovirus type 26 vector-based vaccine encoding the Ebola virus glycoprotein (Ad26.ZEBOV) and the modified vaccinia Ankara vector-based vaccine, encoding glycoproteins from Ebola virus, Sudan virus, and Marburg virus, and the nucleoprotein from the Tai Forest virus (MVA-BN-Filo), in Sierra Leone, a country previously affected by Ebola.

          Methods

          The trial comprised two stages: an open-label, non-randomised stage 1, and a randomised, double-blind, controlled stage 2. The study was done at three clinics in Kambia district, Sierra Leone. In stage 1, healthy adults (aged ≥18 years) residing in or near Kambia district, received an intramuscular injection of Ad26.ZEBOV (5×10 10 viral particles) on day 1 (first dose) followed by an intramuscular injection of MVA-BN-Filo (1×10 8 infectious units) on day 57 (second dose). An Ad26.ZEBOV booster vaccination was offered at 2 years after the first dose to stage 1 participants. The eligibility criteria for adult participants in stage 2 were consistent with stage 1 eligibility criteria. Stage 2 participants were randomly assigned (3:1), by computer-generated block randomisation (block size of eight) via an interactive web-response system, to receive either the Ebola vaccine regimen (Ad26.ZEBOV followed by MVA-BN-Filo) or an intramuscular injection of a single dose of meningococcal quadrivalent (serogroups A, C, W135, and Y) conjugate vaccine (MenACWY; first dose) followed by placebo on day 57 (second dose; control group). Study team personnel, except those with primary responsibility for study vaccine preparation, and participants were masked to study vaccine allocation. The primary outcome was the safety of the Ad26.ZEBOV and MVA-BN-Filo vaccine regimen, which was assessed in all participants who had received at least one dose of study vaccine. Safety was assessed as solicited local and systemic adverse events occurring in the first 7 days after each vaccination, unsolicited adverse events occurring in the first 28 days after each vaccination, and serious adverse events or immediate reportable events occurring up to each participant’s last study visit. Secondary outcomes were to assess Ebola virus glycoprotein-specific binding antibody responses at 21 days after the second vaccine in a per-protocol set of participants (ie, those who had received both vaccinations within the protocol-defined time window, had at least one evaluable post-vaccination sample, and had no major protocol deviations that could have influenced the immune response) and to assess the safety and tolerability of the Ad26.ZEBOV booster vaccination in stage 1 participants who had received the booster dose. This study is registered at ClinicalTrials.gov, NCT02509494.

          Findings

          Between Sept 30, 2015, and Oct 19, 2016, 443 participants (43 in stage 1 and 400 in stage 2) were enrolled; 341 participants assigned to receive the Ad26.ZEBOV and MVA-BN-Filo regimen and 102 participants assigned to receive the MenACWY and placebo regimen received at least one dose of study vaccine. Both regimens were well tolerated with no safety concerns. In stage 1, solicited local adverse events (mostly mild or moderate injection-site pain) were reported in 12 (28%) of 43 participants after Ad26.ZEBOV vaccination and in six (14%) participants after MVA-BN-Filo vaccination. In stage 2, solicited local adverse events were reported in 51 (17%) of 298 participants after Ad26.ZEBOV vaccination, in 58 (24%) of 246 after MVA-BN-Filo vaccination, in 17 (17%) of 102 after MenACWY vaccination, and in eight (9%) of 86 after placebo injection. In stage 1, solicited systemic adverse events were reported in 18 (42%) of 43 participants after Ad26.ZEBOV vaccination and in 17 (40%) after MVA-BN-Filo vaccination. In stage 2, solicited systemic adverse events were reported in 161 (54%) of 298 participants after Ad26.ZEBOV vaccination, in 107 (43%) of 246 after MVA-BN-Filo vaccination, in 51 (50%) of 102 after MenACWY vaccination, and in 39 (45%) of 86 after placebo injection. Solicited systemic adverse events in both stage 1 and 2 participants included mostly mild or moderate headache, myalgia, fatigue, and arthralgia. The most frequent unsolicited adverse event after the first dose was headache in stage 1 and malaria in stage 2. Malaria was the most frequent unsolicited adverse event after the second dose in both stage 1 and 2. No serious adverse event was considered related to the study vaccine, and no immediate reportable events were observed. In stage 1, the safety profile after the booster vaccination was not notably different to that observed after the first dose. Vaccine-induced humoral immune responses were observed in 41 (98%) of 42 stage 1 participants (geometric mean binding antibody concentration 4784 ELISA units [EU]/mL [95% CI 3736–6125]) and in 176 (98%) of 179 stage 2 participants (3810 EU/mL [3312–4383]) at 21 days after the second vaccination.

          Interpretation

          The Ad26.ZEBOV and MVA-BN-Filo vaccine regimen was well tolerated and immunogenic, with persistent humoral immune responses. These data support the use of this vaccine regimen for Ebola virus disease prophylaxis in adults.

          Funding

          Innovative Medicines Initiative 2 Joint Undertaking and Janssen Vaccines & Prevention BV.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ça Suffit!)

          Summary Background rVSV-ZEBOV is a recombinant, replication competent vesicular stomatitis virus-based candidate vaccine expressing a surface glycoprotein of Zaire Ebolavirus. We tested the effect of rVSV-ZEBOV in preventing Ebola virus disease in contacts and contacts of contacts of recently confirmed cases in Guinea, west Africa. Methods We did an open-label, cluster-randomised ring vaccination trial (Ebola ça Suffit!) in the communities of Conakry and eight surrounding prefectures in the Basse-Guinée region of Guinea, and in Tomkolili and Bombali in Sierra Leone. We assessed the efficacy of a single intramuscular dose of rVSV-ZEBOV (2×107 plaque-forming units administered in the deltoid muscle) in the prevention of laboratory confirmed Ebola virus disease. After confirmation of a case of Ebola virus disease, we definitively enumerated on a list a ring (cluster) of all their contacts and contacts of contacts including named contacts and contacts of contacts who were absent at the time of the trial team visit. The list was archived, then we randomly assigned clusters (1:1) to either immediate vaccination or delayed vaccination (21 days later) of all eligible individuals (eg, those aged ≥18 years and not pregnant, breastfeeding, or severely ill). An independent statistician generated the assignment sequence using block randomisation with randomly varying blocks, stratified by location (urban vs rural) and size of rings (≤20 individuals vs >20 individuals). Ebola response teams and laboratory workers were unaware of assignments. After a recommendation by an independent data and safety monitoring board, randomisation was stopped and immediate vaccination was also offered to children aged 6–17 years and all identified rings. The prespecified primary outcome was a laboratory confirmed case of Ebola virus disease with onset 10 days or more from randomisation. The primary analysis compared the incidence of Ebola virus disease in eligible and vaccinated individuals assigned to immediate vaccination versus eligible contacts and contacts of contacts assigned to delayed vaccination. This trial is registered with the Pan African Clinical Trials Registry, number PACTR201503001057193. Findings In the randomised part of the trial we identified 4539 contacts and contacts of contacts in 51 clusters randomly assigned to immediate vaccination (of whom 3232 were eligible, 2151 consented, and 2119 were immediately vaccinated) and 4557 contacts and contacts of contacts in 47 clusters randomly assigned to delayed vaccination (of whom 3096 were eligible, 2539 consented, and 2041 were vaccinated 21 days after randomisation). No cases of Ebola virus disease occurred 10 days or more after randomisation among randomly assigned contacts and contacts of contacts vaccinated in immediate clusters versus 16 cases (7 clusters affected) among all eligible individuals in delayed clusters. Vaccine efficacy was 100% (95% CI 68·9–100·0, p=0·0045), and the calculated intraclass correlation coefficient was 0·035. Additionally, we defined 19 non-randomised clusters in which we enumerated 2745 contacts and contacts of contacts, 2006 of whom were eligible and 1677 were immediately vaccinated, including 194 children. The evidence from all 117 clusters showed that no cases of Ebola virus disease occurred 10 days or more after randomisation among all immediately vaccinated contacts and contacts of contacts versus 23 cases (11 clusters affected) among all eligible contacts and contacts of contacts in delayed plus all eligible contacts and contacts of contacts never vaccinated in immediate clusters. The estimated vaccine efficacy here was 100% (95% CI 79·3–100·0, p=0·0033). 52% of contacts and contacts of contacts assigned to immediate vaccination and in non-randomised clusters received the vaccine immediately; vaccination protected both vaccinated and unvaccinated people in those clusters. 5837 individuals in total received the vaccine (5643 adults and 194 children), and all vaccinees were followed up for 84 days. 3149 (53·9%) of 5837 individuals reported at least one adverse event in the 14 days after vaccination; these were typically mild (87·5% of all 7211 adverse events). Headache (1832 [25·4%]), fatigue (1361 [18·9%]), and muscle pain (942 [13·1%]) were the most commonly reported adverse events in this period across all age groups. 80 serious adverse events were identified, of which two were judged to be related to vaccination (one febrile reaction and one anaphylaxis) and one possibly related (influenza-like illness); all three recovered without sequelae. Interpretation The results add weight to the interim assessment that rVSV-ZEBOV offers substantial protection against Ebola virus disease, with no cases among vaccinated individuals from day 10 after vaccination in both randomised and non-randomised clusters. Funding WHO, UK Wellcome Trust, the UK Government through the Department of International Development, Médecins Sans Frontières, Norwegian Ministry of Foreign Affairs (through the Research Council of Norway's GLOBVAC programme), and the Canadian Government (through the Public Health Agency of Canada, Canadian Institutes of Health Research, International Development Research Centre and Department of Foreign Affairs, Trade and Development).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Safety and Immunogenicity of Novel Adenovirus Type 26- and Modified Vaccinia Ankara-Vectored Ebola Vaccines: A Randomized Clinical Trial.

            Developing effective vaccines against Ebola virus is a global priority.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Safety and immunogenicity of a two-dose heterologous Ad26.ZEBOV and MVA-BN-Filo Ebola vaccine regimen in adults in Europe (EBOVAC2): a randomised, observer-blind, participant-blind, placebo-controlled, phase 2 trial

              To address the unmet medical need for an effective prophylactic vaccine against Ebola virus we assessed the safety and immunogenicity of three different two-dose heterologous vaccination regimens with a replication-deficient adenovirus type 26 vector-based vaccine (Ad26.ZEBOV), expressing Zaire Ebola virus glycoprotein, and a non-replicating, recombinant, modified vaccinia Ankara (MVA) vector-based vaccine, encoding glycoproteins from Zaire Ebola virus, Sudan virus, and Marburg virus, and nucleoprotein from the Tai Forest virus.
                Bookmark

                Author and article information

                Contributors
                Role: Prof
                Role: Prof
                Role: Prof
                Journal
                101130150
                Lancet Infect Dis
                Lancet Infect Dis
                The Lancet. Infectious diseases
                1473-3099
                1474-4457
                11 August 2022
                01 January 2022
                13 September 2021
                07 September 2022
                : 22
                : 1
                : 97-109
                Affiliations
                London School of Hygiene & Tropical Medicine, London, UK; EBOVAC Project, Kambia, Kambia district, Sierra Leone
                London School of Hygiene & Tropical Medicine, London, UK
                London School of Hygiene & Tropical Medicine, London, UK; EBOVAC Project, Kambia, Kambia district, Sierra Leone
                Janssen Vaccines and Prevention BV, Leiden, Netherlands
                EBOVAC Project, Kambia, Kambia district, Sierra Leone; College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
                London School of Hygiene & Tropical Medicine, London, UK; EBOVAC Project, Kambia, Kambia district, Sierra Leone
                EBOVAC Project, Kambia, Kambia district, Sierra Leone; College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
                London School of Hygiene & Tropical Medicine, London, UK; KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya; Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
                London School of Hygiene & Tropical Medicine, London, UK; EBOVAC Project, Kambia, Kambia district, Sierra Leone
                London School of Hygiene & Tropical Medicine, London, UK; EBOVAC Project, Kambia, Kambia district, Sierra Leone; College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
                London School of Hygiene & Tropical Medicine, London, UK
                College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
                College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown
                London School of Hygiene & Tropical Medicine, London, UK; Department of Health Metrics Sciences, University of Washington, Seattle, WA, USA
                London School of Hygiene & Tropical Medicine, London, UK
                Janssen Vaccines and Prevention BV, Leiden, Netherlands
                London School of Hygiene & Tropical Medicine, London, UK
                Janssen Research & Development, Beerse, Belgium
                Janssen Vaccines and Prevention BV, Leiden, Netherlands
                London School of Hygiene & Tropical Medicine, London, UK
                Janssen Vaccines and Prevention BV, Leiden, Netherlands
                College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
                London School of Hygiene & Tropical Medicine, London, UK; Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza, Tanzania
                Author notes
                Correspondence to: Dr Daniela Manno, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK daniela.manno@ 123456lshtm.ac.uk
                [*]

                Joint first authors

                Article
                EMS152543
                10.1016/S1473-3099(21)00125-0
                7613326
                34529963
                0e83e269-723e-450c-8524-2def4c3d7d99

                This work is licensed under a CC BY 4.0 International license.

                History
                Categories
                Article

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article