0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Machine learning in space and time for modelling soil organic carbon change

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: not found
          • Article: not found

          WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            SoilGrids250m: Global gridded soil information based on machine learning

            This paper describes the technical development and accuracy assessment of the most recent and improved version of the SoilGrids system at 250m resolution (June 2016 update). SoilGrids provides global predictions for standard numeric soil properties (organic carbon, bulk density, Cation Exchange Capacity (CEC), pH, soil texture fractions and coarse fragments) at seven standard depths (0, 5, 15, 30, 60, 100 and 200 cm), in addition to predictions of depth to bedrock and distribution of soil classes based on the World Reference Base (WRB) and USDA classification systems (ca. 280 raster layers in total). Predictions were based on ca. 150,000 soil profiles used for training and a stack of 158 remote sensing-based soil covariates (primarily derived from MODIS land products, SRTM DEM derivatives, climatic images and global landform and lithology maps), which were used to fit an ensemble of machine learning methods—random forest and gradient boosting and/or multinomial logistic regression—as implemented in the R packages ranger, xgboost, nnet and caret. The results of 10–fold cross-validation show that the ensemble models explain between 56% (coarse fragments) and 83% (pH) of variation with an overall average of 61%. Improvements in the relative accuracy considering the amount of variation explained, in comparison to the previous version of SoilGrids at 1 km spatial resolution, range from 60 to 230%. Improvements can be attributed to: (1) the use of machine learning instead of linear regression, (2) to considerable investments in preparing finer resolution covariate layers and (3) to insertion of additional soil profiles. Further development of SoilGrids could include refinement of methods to incorporate input uncertainties and derivation of posterior probability distributions (per pixel), and further automation of spatial modeling so that soil maps can be generated for potentially hundreds of soil variables. Another area of future research is the development of methods for multiscale merging of SoilGrids predictions with local and/or national gridded soil products (e.g. up to 50 m spatial resolution) so that increasingly more accurate, complete and consistent global soil information can be produced. SoilGrids are available under the Open Data Base License.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                European Journal of Soil Science
                Eur J Soil Sci
                Wiley
                1351-0754
                1365-2389
                July 2021
                June 30 2020
                July 2021
                : 72
                : 4
                : 1607-1623
                Affiliations
                [1 ]ISRIC – World Soil Information Wageningen The Netherlands
                [2 ]Soil Geography and Landscape Group Wageningen University Wageningen The Netherlands
                [3 ]Instituto Nacional de Tecnologia Agropecuaria Buenos Aires Argentina
                [4 ]The Nature Conservancy Arlington Virginia USA
                [5 ]Vizzuality Madrid Spain
                [6 ]Soil and Crop Sciences Cornell University Ithaca New York USA
                [7 ]Woods Hole Research Center Falmouth Massachusetts USA
                Article
                10.1111/ejss.12998
                0d77a9b3-6938-4e69-b399-6048cb9444a1
                © 2021

                http://creativecommons.org/licenses/by/4.0/

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article