10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Impact of Acute Mild Normobaric Hypoxia and a Single Bout of Exercise to Volitional Exhaustion on Cognitive Performance in Endurance and Strength-Trained Athletes: The role of BDNF, EP-1, Catecholamines and Lactate

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The aim of the study was to examine whether a single bout of exercise to volitional exhaustion, performed under moderate normobaric hypoxia (H), would affect psychomotor performance (PP) in differently trained athletes. For this purpose, ten strength-trained (S) athletes, ten endurance-trained (E) athletes and ten healthy men leading a sedentary lifestyle as a control (C) group performed voluntarily two graded exercise tests until volitional exhaustion (EVE) under normoxia (N) and H (FiO 2 = 14.7%). We measured the peripheral level of the brain derived neurotrophic factor (BDNF), choice reaction time (CRT) and the number of correct reactions (NCR) as indices of PP. Psychomotor tests were performed at rest, immediately after the EVE and 3 minutes after the EVE. Venous blood samples were collected at rest, immediately after cessation of each EVE, and 1 h after each EVE. The results showed that the EVE significantly (p < 0.05) impaired CRT under N and H, and NCR under H only in the E group. The higher WR max in the E compared to the S and C groups was associated with a significant (p < 0.005) increase in adrenaline (A) and noradrenaline (NA). There were no significant differences between conditions (N vs. H) in the BDNF at rest and after exercise. The EVE impaired cognitive function only in the E group; higher involvement of the sympathetic nervous system, A and NA may also play a role in this phenomenon. Therefore, it can be concluded that exposure to H did not have a negative impact on CRT or NCR. Moreover, BDNF did not improve cognitive function.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          Exercise training increases size of hippocampus and improves memory.

          The hippocampus shrinks in late adulthood, leading to impaired memory and increased risk for dementia. Hippocampal and medial temporal lobe volumes are larger in higher-fit adults, and physical activity training increases hippocampal perfusion, but the extent to which aerobic exercise training can modify hippocampal volume in late adulthood remains unknown. Here we show, in a randomized controlled trial with 120 older adults, that aerobic exercise training increases the size of the anterior hippocampus, leading to improvements in spatial memory. Exercise training increased hippocampal volume by 2%, effectively reversing age-related loss in volume by 1 to 2 y. We also demonstrate that increased hippocampal volume is associated with greater serum levels of BDNF, a mediator of neurogenesis in the dentate gyrus. Hippocampal volume declined in the control group, but higher preintervention fitness partially attenuated the decline, suggesting that fitness protects against volume loss. Caudate nucleus and thalamus volumes were unaffected by the intervention. These theoretically important findings indicate that aerobic exercise training is effective at reversing hippocampal volume loss in late adulthood, which is accompanied by improved memory function.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The effects of acute exercise on cognitive performance: a meta-analysis.

            There is a substantial body of literature related to the effects of a single session of exercise on cognitive performance. The premise underlying this research is that physiological changes in response to exercise have implications for cognitive function. This literature has been reviewed both narratively and meta-analytically and, although the research findings are mixed, researchers have generally concluded that there is a small positive effect. The purpose of this meta-analysis was to provide an updated comprehensive analysis of the extant literature on acute exercise and cognitive performance and to explore the effects of moderators that have implications for mechanisms of the effects. Searches of electronic databases and examinations of reference lists from relevant studies resulted in 79 studies meeting inclusion criteria. Consistent with past findings, analyses indicated that the overall effect was positive and small (g=0.097 n=1034). Positive and small effects were also found in all three acute exercise paradigms: during exercise (g=0.101; 95% confidence interval [CI]; 0.041-0.160), immediately following exercise (g=0.108; 95% CI; 0.069-0.147), and after a delay (g=0.103; 95% CI; 0.035-0.170). Examination of potential moderators indicated that exercise duration, exercise intensity, type of cognitive performance assessed, and participant fitness were significant moderators. In conclusion, the effects of acute exercise on cognitive performance are generally small; however, larger effects are possible for particular cognitive outcomes and when specific exercise parameters are used. Copyright © 2012 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The BDNF val66met Polymorphism Affects Activity-Dependent Secretion of BDNF and Human Memory and Hippocampal Function

                Bookmark

                Author and article information

                Journal
                J Hum Kinet
                J Hum Kinet
                JHK
                Journal of Human Kinetics
                Termedia Publishing House
                1640-5544
                1899-7562
                15 July 2023
                July 2023
                : 87
                : 77-93
                Affiliations
                [1 ]Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland.
                [2 ]Department of Applied and Clinical Physiology, Collegium Medicum University of Zielona Gora, Zielona Gora, Poland.
                [3 ]Department of Physical Education and Health in Biała Podlaska, Józef Piłsudski University of Physical Education in Warsaw, Biała Podlaska, Poland.
                Author notes
                Article
                168282
                10.5114/jhk/168282
                10407317
                37559758
                0d3c325a-080c-427a-bdb8-9adb858e0d5e
                Copyright: © Academy of Physical Education in Katowice

                This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) ( https://creativecommons.org/licenses/by/4.0/). This license lets others distribute, remix, adapt, and build upon your work, even commercially, as long as they credit you for the original creation.

                History
                : 07 February 2023
                : 05 April 2023
                Categories
                Research Paper

                psychomotor performance,brain-derived neurotrophic factor,exhaustion,athletes

                Comments

                Comment on this article