Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Resistance to and repair of shell breakage induced by durophages in Late Ordovician brachiopods

      Journal of Paleontology
      Cambridge University Press (CUP)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Repaired shell breakage in Late Ordovician brachiopods from the Cincinnatian Series in the tri-state area of Indiana-Kentucky-Ohio may be described in increasing order of severity as scalloped, divoted, cleft and embayed. Concavo-convex brachiopod taxa display disproportionately higher frequencies of shell repair assigned to each category, whereas inflated, biconvex, plicate, sulcate taxa display disproportionately lower frequencies of shell repair. Certain plicate biconvex taxa lack examples of cleft and embayed valves. Plano-convex and dorsi-biconvex, costate taxa showed intermediate frequencies of shell repair, but lack representatives of embayed valves. Selective pressure for evolution of morphologic characters resistant to shell breakage may have favored phyletic trends of increasing size, geniculation and progressive development of a commissural ridge around the lophophore platform of the interior of the concave brachial valve ofLeptaenaandRafinesquina. Size-frequency distributions for repaired and undamaged valves provide equivocal evidence of a size refuge from predator-induced shell breakage inRafinesquina. Among the contemporaneous, potentially durophagous predators, nautiloids probably inflicted the sublethal injuries sustained by the brachiopods. The incriminating evidence includes a fragment of a crushing element imbedded in a valve ofRafinesquinathat bears a very striking resemblance to calcified rhyncholites of Mesozoic to Recent nautiloids.

          Related collections

          Most cited references8

          • Record: found
          • Abstract: found
          • Article: not found

          The Mesozoic marine revolution: evidence from snails, predators and grazers

          Tertiary and Recent marine gastropods include in their ranks a complement of mechanically sturdy forms unknown in earlier epochs. Open coiling, planispiral coiling, and umbilici detract from shell sturdiness, and were commoner among Paleozoic and Early Mesozoic gastropods than among younger forms. Strong external sculpture, narrow elongate apertures, and apertural dentition promote resistance to crushing predation and are primarily associated with post-Jurassic mesogastropods, neogastropods, and neritaceans. The ability to remodel the interior of the shell, developed primarily in gastropods with a non-nacreous shell structure, has contributed greatly to the acquisition of these antipredatory features.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Feeding Behavior of Asteroids and Escape Responses of their Prey in the Puget Sound Region

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Tactics of a Predator, Carcinus maenas, and Morphological Responses of the Prey, Nucella lapillus

                Bookmark

                Author and article information

                Journal
                applab
                Journal of Paleontology
                J. Paleontol.
                Cambridge University Press (CUP)
                0022-3360
                1937-2337
                March 1986
                May 2016
                : 60
                : 02
                : 273-285
                Article
                10.1017/S0022336000021806
                0cc5f53a-313b-4bd0-8426-fe14619b66e1
                © 1986
                History

                Comments

                Comment on this article