5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Changing Landscape of Autoimmune Hemolytic Anemia

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Autoimmune hemolytic anemia (AIHA) is a greatly heterogeneous disease due to autoantibodies directed against erythrocytes, with or without complement activation. The clinical picture ranges from mild/compensated to life-threatening anemia, depending on the antibody's thermal amplitude, isotype and ability to fix complement, as well as on bone marrow compensation. Since few years ago, steroids, immunesuppressants and splenectomy have been the mainstay of treatment. More recently, several target therapies are increasingly used in the clinical practice or are under development in clinical trials. This has led to the accumulation of refractory/relapsed cases that often represent a clinical challenge. Moreover, the availability of several drugs acting on the different pathophysiologic mechanisms of the disease pinpoints the need to harness therapy. In particular, it is advisable to define the best choice, sequence and/or combination of drugs during the different phases of the disease. In particular relapsed/refractory cases may resemble pre-myelodysplastic or bone marrow failure syndromes, suggesting a careful use of immunosuppressants, and vice versa advising bone marrow immunomodulating/stimulating agents. A peculiar setting is AIHA after autologous and allogeneic hematopoietic stem cell transplantation, which is increasingly reported. These cases are generally severe and refractory to standard therapy, and have high mortality. AIHAs may be primary/idiopathic or secondary to infections, autoimmune diseases, malignancies, particularly lymphoproliferative disorders, and drugs, further complicating their clinical picture and management. Regarding new drugs, the false positivity of the Coombs test (direct antiglobulin test, DAT) following daratumumab adds to the list of difficult diagnosis, together with the passenger lymphocyte syndrome after solid organ transplants. Diagnosis of DAT-negative AIHAs and evaluation of disease-related risk factors for relapse and mortality, notwithstanding improvement in diagnostic approach, are still an unmet need. Finally, AIHA is increasingly described following therapy of solid cancers with inhibitors of immune checkpoint molecules. On the whole, the double-edged sword of new pathogenetic insights and therapies has changed the landscape of AIHA, both providing enthusiastic knowledge and complicating the clinical management of this disease.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Diagnosis and treatment of autoimmune hemolytic anemia in adults: Recommendations from the First International Consensus Meeting

          Autoimmune hemolytic anemias (AIHAs) are rare and heterogeneous disorders characterized by the destruction of red blood cells through warm or cold antibodies. There is currently no licensed treatment for AIHA. Due to the paucity of clinical trials, recommendations on diagnosis and therapy have often been based on expert opinions and some national guidelines. Here we report the recommendations of the First International Consensus Group, who met with the aim to review currently available data and to provide standardized diagnostic criteria and therapeutic approaches as well as an overview of novel therapies. Exact diagnostic workup is important because symptoms, course of disease, and therapeutic management relate to the type of antibody involved. Monospecific direct antiglobulin test is considered mandatory in the diagnostic workup, and any causes of secondary AIHA have to be diagnosed. Corticosteroids remain first-line therapy for warm-AIHA, while the addition of rituximab should be considered early in severe cases and if no prompt response to steroids is achieved. Rituximab with or without bendamustine should be used in the first line for patients with cold agglutinin disease requiring therapy. We identified a need to establish an international AIHA network. Future recommendations should be based on prospective clinical trials whenever possible.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Clinical Applications of Hemolytic Markers in the Differential Diagnosis and Management of Hemolytic Anemia

            Several hemolytic markers are available to guide the differential diagnosis and to monitor treatment of hemolytic conditions. They include increased reticulocytes, an indicator of marrow compensatory response, elevated lactate dehydrogenase, a marker of intravascular hemolysis, reduced haptoglobin, and unconjugated hyperbilirubinemia. The direct antiglobulin test is the cornerstone of autoimmune forms, and blood smear examination is fundamental in the diagnosis of congenital membrane defects and thrombotic microangiopathies. Marked increase of lactate dehydrogenase and hemosiderinuria are typical of intravascular hemolysis, as observed in paroxysmal nocturnal hemoglobinuria, and hyperferritinemia is associated with chronic hemolysis. Prosthetic valve replacement and stenting are also associated with intravascular and chronic hemolysis. Compensatory reticulocytosis may be inadequate/absent in case of marrow involvement, iron/vitamin deficiency, infections, or autoimmune reaction against bone marrow-precursors. Reticulocytopenia occurs in 20–40% of autoimmune hemolytic anemia cases and is a poor prognostic factor. Increased reticulocytes, lactate dehydrogenase, and bilirubin, as well as reduced haptoglobin, are observed in conditions other than hemolysis that may confound the clinical picture. Hemoglobin defines the clinical severity of hemolysis, and thrombocytopenia suggests a possible thrombotic microangiopathy or Evans' syndrome. A comprehensive clinical and laboratory evaluation is advisable for a correct diagnostic and therapeutic workup of the different hemolytic conditions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              New Insights in the Pathogenesis of Autoimmune Hemolytic Anemia

              Summary Autoimmune hemolytic anemia (AIHA) is caused by the increased destruction of red blood cells (RBCs) by anti-RBC autoantibodies with or without complement activation. RBC destruction may occur both by a direct lysis through the sequential activation of the final components of the complement cascade (membrane attack complex), or by antibody-dependent cell-mediated cytotoxicity (ADCC). The pathogenic role of autoantibodies depends on their class (the most frequent are IgG and IgM), subclass, thermal amplitude (warm and cold forms),as well as affinity and efficiency in activating complement. Several cytokines and cytotoxic mechanisms (CD8+ T and natural killer cells) are further involved in RBC destruction. Moreover, activated macrophages carrying Fc receptors may recognize and phagocyte erythrocytes opsonized by autoantibodies and complement. Direct complement-mediated lysis takes place mainly in the circulations and liver, whereas ADCC, cytotoxicity, and phagocytosis occur preferentially in the spleen and lymphoid organs. The degree of intravascular hemolysis is 10-fold greater than extravascular one. Finally, the efficacy of the erythroblastic compensatory response can greatly influence the clinical picture of AIHA. The interplay and relative burden of all these pathogenic mechanisms give reason for the great clinical heterogeneity of AIHAs, from fully compensated to rapidly evolving fatal cases.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                03 June 2020
                2020
                : 11
                : 946
                Affiliations
                [1] 1UO Ematologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milan, Italy
                [2] 2Università degli Studi di Milano , Milan, Italy
                Author notes

                Edited by: Emira Ayroldi, University of Perugia, Italy

                Reviewed by: Ursula Grohmann, University of Perugia, Italy; Anne Cooke, University of Cambridge, United Kingdom

                *Correspondence: Wilma Barcellini wilma.barcellini@ 123456policlinico.mi.it

                This article was submitted to Inflammation, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2020.00946
                7325906
                32655543
                0bf9cb5f-8684-4231-b01a-9bc26fa2c5c3
                Copyright © 2020 Barcellini and Fattizzo.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 13 February 2020
                : 22 April 2020
                Page count
                Figures: 2, Tables: 4, Equations: 0, References: 44, Pages: 12, Words: 7691
                Categories
                Immunology
                Review

                Immunology
                warm autoimmune hemolytic anemia,cold agglutinin disease,bone marrow transplant,checkpoint inhibitors,complement inhibitors,target therapy

                Comments

                Comment on this article