55
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Probing the Flexibility of Large Conformational Changes in Protein Structures through Local Perturbations

      research-article
      * ,
      PLoS Computational Biology
      Public Library of Science

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Protein conformational changes and dynamic behavior are fundamental for such processes as catalysis, regulation, and substrate recognition. Although protein dynamics have been successfully explored in computer simulation, there is an intermediate-scale of motions that has proven difficult to simulate—the motion of individual segments or domains that move independently of the body the protein. Here, we introduce a molecular-dynamics perturbation method, the Rotamerically Induced Perturbation (RIP), which can generate large, coherent motions of structural elements in picoseconds by applying large torsional perturbations to individual sidechains. Despite the large-scale motions, secondary structure elements remain intact without the need for applying backbone positional restraints. Owing to its computational efficiency, RIP can be applied to every residue in a protein, producing a global map of deformability. This map is remarkably sparse, with the dominant sites of deformation generally found on the protein surface. The global map can be used to identify loops and helices that are less tightly bound to the protein and thus are likely sites of dynamic modulation that may have important functional consequences. Additionally, they identify individual residues that have the potential to drive large-scale coherent conformational change. Applying RIP to two well-studied proteins, Dihdydrofolate Reductase and Triosephosphate Isomerase, which possess functionally-relevant mobile loops that fluctuate on the microsecond/millisecond timescale, the RIP deformation map identifies and recapitulates the flexibility of these elements. In contrast, the RIP deformation map of α-lytic protease, a kinetically stable protein, results in a map with no significant deformations. In the N-terminal domain of HSP90, the RIP deformation map clearly identifies the ligand-binding lid as a highly flexible region capable of large conformational changes. In the Estrogen Receptor ligand-binding domain, the RIP deformation map is quite sparse except for one large conformational change involving Helix-12, which is the structural element that allosterically links ligand binding to receptor activation. RIP analysis has the potential to discover sites of functional conformational changes and the linchpin residues critical in determining these conformational states.

          Author Summary

          Many proteins undergo large motions to carry out their biological functions. The exact nature of these motions is typically inferred from the crystal structures of the protein trapped in different states, which normally constitutes a difficult series of experiments. As molecular dynamics is generally accepted to accurately model the motion of proteins, the promise is that a long enough simulation will generate all the motions of a given protein structure. Unfortunately, current systems run too slowly to simulate all but the smallest motions. To overcome this computational limit, we have developed a molecular-dynamics perturbation method that induces large changes in a protein structure in very short simulation times. The changes correspond to large motions of specific structural elements on the surface of the protein that corroborate well with the canonical motions of several well-characterized proteins. This bodes well for our method to identify, for any given protein structure, structural elements on the surface that might bind drugs, regulate signals, undergo chemical modifications, or become unstructured.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          The way things move: looking under the hood of molecular motor proteins.

          The microtubule-based kinesin motors and actin-based myosin motors generate motions associated with intracellular trafficking, cell division, and muscle contraction. Early studies suggested that these molecular motors work by very different mechanisms. Recently, however, it has become clear that kinesin and myosin share a common core structure and convert energy from adenosine triphosphate into protein motion using a similar conformational change strategy. Many different types of mechanical amplifiers have evolved that operate in conjunction with the conserved core. This modular design has given rise to a remarkable diversity of kinesin and myosin motors whose motile properties are optimized for performing distinct biological functions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution.

            An implementation of classical molecular dynamics on parallel computers of increased efficiency has enabled a simulation of protein folding with explicit representation of water for 1 microsecond, about two orders of magnitude longer than the longest simulation of a protein in water reported to date. Starting with an unfolded state of villin headpiece subdomain, hydrophobic collapse and helix formation occur in an initial phase, followed by conformational readjustments. A marginally stable state, which has a lifetime of about 150 nanoseconds, a favorable solvation free energy, and shows significant resemblance to the native structure, is observed; two pathways to this state have been found.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structural Analysis of E. coli hsp90 reveals dramatic nucleotide-dependent conformational rearrangements.

              In eukaryotes, the ubiquitous and abundant members of the 90 kilodalton heat-shock protein (hsp90) chaperone family facilitate the folding and conformational changes of a broad array of proteins important in cell signaling, proliferation, and survival. Here we describe the effects of nucleotides on the structure of full-length HtpG, the Escherichia coli hsp90 ortholog. By electron microscopy, the nucleotide-free, AMPPNP bound, and ADP bound states of HtpG adopt completely distinct conformations. Structural characterization of nucleotide-free and ADP bound HtpG was extended to higher resolution by X-ray crystallography. In the absence of nucleotide, HtpG exhibits an "open" conformation in which the three domains of each monomer present hydrophobic elements into the large cleft formed by the dimer. By contrast, ADP binding drives dramatic conformational changes that allow these hydrophobic elements to converge and shield each other from solvent, suggesting a mechanism by which nucleotides could control client protein binding and release.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                April 2009
                April 2009
                3 April 2009
                : 5
                : 4
                : e1000343
                Affiliations
                [1]Howard Hughes Medical Institute and the Department of Biochemistry, University of California San Francisco, San Francisco, California, United States of America
                Stanford University, United States of America
                Author notes

                Conceived and designed the experiments: BKH DAA. Performed the experiments: BKH. Analyzed the data: BKH. Wrote the paper: BKH DAA.

                Article
                08-PLCB-RA-0893R2
                10.1371/journal.pcbi.1000343
                2660149
                19343225
                0b21a86e-924e-4ecd-af97-4dd1b816f230
                Ho, Agard. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 8 October 2008
                : 27 February 2009
                Page count
                Pages: 13
                Categories
                Research Article
                Biophysics/Theory and Simulation
                Computational Biology/Molecular Dynamics

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article