Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Change in Allosteric Network Affects Binding Affinities of PDZ Domains: Analysis through Perturbation Response Scanning

      research-article
      1 , 2 , 1 , 2 , *
      PLoS Computational Biology
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The allosteric mechanism plays a key role in cellular functions of several PDZ domain proteins (PDZs) and is directly linked to pharmaceutical applications; however, it is a challenge to elaborate the nature and extent of these allosteric interactions. One solution to this problem is to explore the dynamics of PDZs, which may provide insights about how intramolecular communication occurs within a single domain. Here, we develop an advancement of perturbation response scanning (PRS) that couples elastic network models with linear response theory (LRT) to predict key residues in allosteric transitions of the two most studied PDZs (PSD-95 PDZ3 domain and hPTP1E PDZ2 domain). With PRS, we first identify the residues that give the highest mean square fluctuation response upon perturbing the binding sites. Strikingly, we observe that the residues with the highest mean square fluctuation response agree with experimentally determined residues involved in allosteric transitions. Second, we construct the allosteric pathways by linking the residues giving the same directional response upon perturbation of the binding sites. The predicted intramolecular communication pathways reveal that PSD-95 and hPTP1E have different pathways through the dynamic coupling of different residue pairs. Moreover, our analysis provides a molecular understanding of experimentally observed hidden allostery of PSD-95. We show that removing the distal third alpha helix from the binding site alters the allosteric pathway and decreases the binding affinity. Overall, these results indicate that (i) dynamics plays a key role in allosteric regulations of PDZs, (ii) the local changes in the residue interactions can lead to significant changes in the dynamics of allosteric regulations, and (iii) this might be the mechanism that each PDZ uses to tailor their binding specificities regulation.

          Author Summary

          PDZ domain proteins (PDZs) act as adapters in organizing functional protein complexes. Through dynamic interactions, PDZs play a key role in mediating key cellular functions in the cell, and they are linked to currently challenging diseases including Alzheimer's, Parkinson's and cancer. Moreover, they are associated with allosteric regulations in mediating signaling. Therefore, it is critical to have knowledge of how the allosteric transition occurs in PDZs. We investigate the allosteric response of the two most studied PDZs, PSD-95 and hPTP1E, using the perturbation response scanning (PRS) approach. The method treats the protein as an elastic network and uses linear response theory (LRT) to obtain residue fluctuations upon exerting directed random forces on selected residues. With this efficient and fast approach, we identify the key residues that mediate long-range communication and find the allosteric pathways. Although the structures of PSD-95 and hPTP1E are very similar, our analysis predicts that their allosteric pathways are different. We also observe a significant change in allosteric pathways and a decrease in binding affinity upon removal of the distal α3 helix of PSD-95. This approach enables us to understand how dynamic interactions play an important role in allosteric regulations.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: not found
          • Article: not found

          Evolutionarily conserved networks of residues mediate allosteric communication in proteins.

          A fundamental goal in cellular signaling is to understand allosteric communication, the process by which signals originating at one site in a protein propagate reliably to affect distant functional sites. The general principles of protein structure that underlie this process remain unknown. Here, we describe a sequence-based statistical method for quantitatively mapping the global network of amino acid interactions in a protein. Application of this method for three structurally and functionally distinct protein families (G protein-coupled receptors, the chymotrypsin class of serine proteases and hemoglobins) reveals a surprisingly simple architecture for amino acid interactions in each protein family: a small subset of residues forms physically connected networks that link distant functional sites in the tertiary structure. Although small in number, residues comprising the network show excellent correlation with the large body of mechanistic data available for each family. The data suggest that evolutionarily conserved sparse networks of amino acid interactions represent structural motifs for allosteric communication in proteins.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Allosteric regulation and catalysis emerge via a common route.

            Allosteric regulation of protein function is a mechanism by which an event in one place of a protein structure causes an effect at another site, much like the behavior of a telecommunications network in which a collection of transmitters, receivers and transceivers communicate with each other across long distances. For example, ligand binding or an amino acid mutation at an allosteric site can alter enzymatic activity or binding affinity in a distal region such as the active site or a second binding site. The mechanism of this site-to-site communication is of great interest, especially since allosteric effects must be considered in drug design and protein engineering. In this review, conformational mobility as the common route between allosteric regulation and catalysis is discussed. We summarize recent experimental data and the resulting insights into allostery within proteins, and we discuss the nature of future studies and the new applications that may result from increased understanding of this regulatory mechanism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dynamically driven protein allostery.

              Allosteric interactions are typically considered to proceed through a series of discrete changes in bonding interactions that alter the protein conformation. Here we show that allostery can be mediated exclusively by transmitted changes in protein motions. We have characterized the negatively cooperative binding of cAMP to the dimeric catabolite activator protein (CAP) at discrete conformational states. Binding of the first cAMP to one subunit of a CAP dimer has no effect on the conformation of the other subunit. The dynamics of the system, however, are modulated in a distinct way by the sequential ligand binding process, with the first cAMP partially enhancing and the second cAMP completely quenching protein motions. As a result, the second cAMP binding incurs a pronounced conformational entropic penalty that is entirely responsible for the observed cooperativity. The results provide strong support for the existence of purely dynamics-driven allostery.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                October 2011
                October 2011
                6 October 2011
                : 7
                : 10
                : e1002154
                Affiliations
                [1 ]Center for Biological Physics, Arizona State University, Tempe, Arizona, United States of America
                [2 ]Department of Physics, Arizona State University, Tempe, Arizona, United States of America
                National Cancer Institute, United States of America and Tel Aviv University, Israel
                Author notes

                Conceived and designed the experiments: ZNG SBO. Performed the experiments: ZNG SBO. Analyzed the data: ZNG SBO. Contributed reagents/materials/analysis tools: ZNG SBO. Wrote the paper: ZNG SBO.

                Article
                PCOMPBIOL-D-11-00211
                10.1371/journal.pcbi.1002154
                3188487
                21998559
                4a94b9fc-e21d-46dc-87c2-e9907ab13d50
                Gerek, Ozkan. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 14 February 2011
                : 22 June 2011
                Page count
                Pages: 12
                Categories
                Research Article
                Biology
                Computational Biology

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content46

                Cited by64

                Most referenced authors950