Identifying new hepatocellular carcinoma (HCC)-driven signaling molecules and discovering their molecular mechanisms are crucial for efficient and better outcomes. Recently, OMA1 and YME1L, the inner mitochondrial proteases, were displayed to be associated with tumor progression in various cancers; however, their role in HCC has not yet been studied. Therefore, we evaluated the possible role of OMA1/YME1L in HCC staging and discussed their potential role in cellular apoptosis and proliferation. Our study was performed using four groups of male albino rats: a normal control and three diethyl nitrosamine-treated groups for 8, 16, and 24 weeks. The OMA1 and YME1L, matrix-metalloproteinase-9 (MMP-9), and cyclin D1 content were measured in liver tissues, while alpha-fetoprotein (AFP) level was assessed in serum. Additionally, Ki-67 expression was evaluated by immunohistochemistry. The relative hepatic expression of Bax, and tissue inhibitor matrix metalloproteinase (TIMP-3) was measured. Herein, we confirmed for the first time that OMA1 is down-regulated while YME1L is up-regulated in HCC in the three studied stages with subsequent inhibition of apoptosis and cell cycle progression. Furthermore, these proteases have a possible role in metastasis. These newly recognized results suggested OMA1 and YME1L as possible diagnostic tools and therapeutic targets for HCC management.