11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Biomechanical Energy‐Harvesting Wearable Textile‐Based Personal Thermal Management Device Containing Epitaxially Grown Aligned Ag‐Tipped‐Ni x Co 1− x Se Nanowires/Reduced Graphene Oxide

      1 , 1 , 1 , 1 , 1
      Advanced Functional Materials
      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Superior thermal conductivity of single-layer graphene.

          We report the measurement of the thermal conductivity of a suspended single-layer graphene. The room temperature values of the thermal conductivity in the range approximately (4.84+/-0.44)x10(3) to (5.30+/-0.48)x10(3) W/mK were extracted for a single-layer graphene from the dependence of the Raman G peak frequency on the excitation laser power and independently measured G peak temperature coefficient. The extremely high value of the thermal conductivity suggests that graphene can outperform carbon nanotubes in heat conduction. The superb thermal conduction property of graphene is beneficial for the proposed electronic applications and establishes graphene as an excellent material for thermal management.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis.

            Wearable sensor technologies are essential to the realization of personalized medicine through continuously monitoring an individual's state of health. Sampling human sweat, which is rich in physiological information, could enable non-invasive monitoring. Previously reported sweat-based and other non-invasive biosensors either can only monitor a single analyte at a time or lack on-site signal processing circuitry and sensor calibration mechanisms for accurate analysis of the physiological state. Given the complexity of sweat secretion, simultaneous and multiplexed screening of target biomarkers is critical and requires full system integration to ensure the accuracy of measurements. Here we present a mechanically flexible and fully integrated (that is, no external analysis is needed) sensor array for multiplexed in situ perspiration analysis, which simultaneously and selectively measures sweat metabolites (such as glucose and lactate) and electrolytes (such as sodium and potassium ions), as well as the skin temperature (to calibrate the response of the sensors). Our work bridges the technological gap between signal transduction, conditioning (amplification and filtering), processing and wireless transmission in wearable biosensors by merging plastic-based sensors that interface with the skin with silicon integrated circuits consolidated on a flexible circuit board for complex signal processing. This application could not have been realized using either of these technologies alone owing to their respective inherent limitations. The wearable system is used to measure the detailed sweat profile of human subjects engaged in prolonged indoor and outdoor physical activities, and to make a real-time assessment of the physiological state of the subjects. This platform enables a wide range of personalized diagnostic and physiological monitoring applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors

              A review on the principles, novel applications and perspectives of triboelectric nanogenerators as power sources and as self-powered sensors.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Advanced Functional Materials
                Adv. Funct. Mater.
                Wiley
                1616-301X
                1616-3028
                April 14 2019
                August 2019
                June 12 2019
                August 2019
                : 29
                : 31
                : 1903144
                Affiliations
                [1 ]Department of Mechanical EngineeringUlsan National Institute of Science and Technology 50 UNIST‐gil Ulsan 44919 Republic of Korea
                Article
                10.1002/adfm.201903144
                0a696965-0197-4b5a-b53d-c0d2fb94a960
                © 2019

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article