7
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Persistent Neurological Deficits in Mouse PASC Reveal Antiviral Drug Limitations

      Preprint
      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Post-Acute Sequelae of COVID-19 (PASC) encompasses persistent neurological symptoms, including olfactory and autonomic dysfunction. Here, we report chronic neurological dysfunction in mice infected with a virulent mouse-adapted SARS-CoV-2 that does not infect the brain. Long after recovery from nasal infection, we observed loss of tyrosine hydroxylase (TH) expression in olfactory bulb glomeruli and neurotransmitter levels in the substantia nigra (SN) persisted. Vulnerability of dopaminergic neurons in these brain areas was accompanied by increased levels of proinflammatory cytokines and neurobehavioral changes. RNAseq analysis unveiled persistent microglia activation, as found in human neurodegenerative diseases. Early treatment with antivirals (nirmatrelvir and molnupiravir) reduced virus titers and lung inflammation but failed to prevent neurological abnormalities, as observed in patients. Together these results show that chronic deficiencies in neuronal function in SARS-CoV-2-infected mice are not directly linked to ongoing olfactory epithelium dysfunction. Rather, they bear similarity with neurodegenerative disease, the vulnerability of which is exacerbated by chronic inflammation.

          Related collections

          Most cited references79

          • Record: found
          • Abstract: found
          • Article: found

          Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China

            The outbreak of coronavirus disease 2019 (COVID-19) in Wuhan, China, is serious and has the potential to become an epidemic worldwide. Several studies have described typical clinical manifestations including fever, cough, diarrhea, and fatigue. However, to our knowledge, it has not been reported that patients with COVID-19 had any neurologic manifestations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Parkinson disease

              Parkinson disease is the second-most common neurodegenerative disorder that affects 2-3% of the population ≥65 years of age. Neuronal loss in the substantia nigra, which causes striatal dopamine deficiency, and intracellular inclusions containing aggregates of α-synuclein are the neuropathological hallmarks of Parkinson disease. Multiple other cell types throughout the central and peripheral autonomic nervous system are also involved, probably from early disease onwards. Although clinical diagnosis relies on the presence of bradykinesia and other cardinal motor features, Parkinson disease is associated with many non-motor symptoms that add to overall disability. The underlying molecular pathogenesis involves multiple pathways and mechanisms: α-synuclein proteostasis, mitochondrial function, oxidative stress, calcium homeostasis, axonal transport and neuroinflammation. Recent research into diagnostic biomarkers has taken advantage of neuroimaging in which several modalities, including PET, single-photon emission CT (SPECT) and novel MRI techniques, have been shown to aid early and differential diagnosis. Treatment of Parkinson disease is anchored on pharmacological substitution of striatal dopamine, in addition to non-dopaminergic approaches to address both motor and non-motor symptoms and deep brain stimulation for those developing intractable L-DOPA-related motor complications. Experimental therapies have tried to restore striatal dopamine by gene-based and cell-based approaches, and most recently, aggregation and cellular transport of α-synuclein have become therapeutic targets. One of the greatest current challenges is to identify markers for prodromal disease stages, which would allow novel disease-modifying therapies to be started earlier.
                Bookmark

                Author and article information

                Journal
                bioRxiv
                BIORXIV
                bioRxiv
                Cold Spring Harbor Laboratory
                03 June 2024
                : 2024.06.02.596989
                Affiliations
                [1 ]Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242
                [2 ]Iowa Neuroscience Institute, University of Iowa, IA, USA 52242
                [3 ]Department of Neurology, University of Iowa, Iowa City, IA 52242
                [4 ]Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN
                [5 ]Stowers Institute for Medical Research, Kansas City, MO 64110
                [6 ]Department of Pathology, University of Iowa, Iowa City, IA 52242
                [7 ]Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
                Author notes

                Author’s contributions

                The study was designed by SP and AKV. Experiments were conducted by AKV, SL, ED, LCL. AKV, MH, QQ, CRY, MWA and SP acquired and analyzed data. JE helped with RNAseq data analysis. LCL, MH provided reagents. Manuscript was initially prepared by AKV and SP. All of the authors revised and approved the final manuscript.

                [# ]Corresponding Author. Stanley Perlman, Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, Stanley-perlman@ 123456uiowa.edu
                Author information
                http://orcid.org/0000-0001-7855-3455
                Article
                10.1101/2024.06.02.596989
                11185538
                38895239
                0a46f9f8-d829-46d5-b75c-01ca623f0631

                This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format for noncommercial purposes only, and only so long as attribution is given to the creator.

                History
                Categories
                Article

                sars-cov-2,brain,anosmia,tyrosine hydroxylase,substantia nigra,neurodegeneration,olfactory bulb,microglia,inflammation

                Comments

                Comment on this article