4
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Longitudinal SARS-CoV-2 humoral response in MS patients with and without SARS-CoV-2 infection prior to vaccination

      brief-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          During the COVID-19 pandemic, certain disease modifying therapies (DMTs) used in multiple sclerosis (MS), such as anti-CD20 therapies, have been associated with decreased humoral responses after SARS-CoV-2 vaccination. Hybrid immunity, referring to immunity after both vaccination and SARS-CoV-2 infection might increase humoral responses.

          Methods

          This was a substudy of two prospective cohort studies on SARS-CoV-2 antibodies after SARS-CoV-2 infection and vaccination. RBD-specific IgG titers of patients with MS and healthy controls who had experienced SARS-CoV-2 infection prior to the first vaccination were compared with those patients and healthy controls without prior infection. Humoral responses were measured at various time points after SARS-CoV-2 infection in convalescent patients and all patients prior to the first vaccination, 28 days after the first vaccination, and 28 days after the second vaccination.

          Results

          One hundred and two individuals [of which 34 patients with MS and DMTs (natalizumab or ocrelizumab), 30 patients without DMTs, and 38 healthy controls] were included. Fifty one of these individuals were convalescent. Median SARS-CoV-2 antibody titers were higher after the first vaccination in convalescent individuals compared with individuals without infection prior to vaccination. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody titers were comparable after the second vaccination in patients with MS with and without prior infection. However, in the convalescent ocrelizumab-treated patients, SARS-CoV-2 antibody titers did not increase after vaccinations.

          Conclusion

          In patients with MS without anti-CD20 therapies, SARS-CoV-2 infection before vaccination increases humoral responses after the first vaccination, similar to the healthy controls. In patients with MS treated with ocrelizumab (convalescent and non-convalescent), humoral responses remained low.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Humoral- and T-Cell–Specific Immune Responses to SARS-CoV-2 mRNA Vaccination in Patients With MS Using Different Disease-Modifying Therapies

          Background and Objectives To evaluate the immune-specific response after full severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination of patients with multiple sclerosis (MS) treated with different disease-modifying drugs by the detection of both serologic and T-cell responses. Methods Healthcare workers (HCWs) and patients with MS, having completed the 2-dose schedule of an mRNA-based vaccine against SARS-CoV-2 in the past 2–4 weeks, were enrolled from 2 parallel prospective studies conducted in Rome, Italy, at the National Institute for Infectious diseases Spallanzani–IRCSS and San Camillo Forlanini Hospital. Serologic response was evaluated by quantifying the region-binding domain (RBD) and neutralizing antibodies. Cell-mediated response was analyzed by a whole-blood test quantifying interferon (IFN)–γ response to spike peptides. Cells responding to spike stimulation were identified by fluorescence-activated cell sorting analysis. Results We prospectively enrolled 186 vaccinated individuals: 78 HCWs and 108 patients with MS. Twenty-eight patients with MS were treated with IFN-β, 35 with fingolimod, 20 with cladribine, and 25 with ocrelizumab. A lower anti-RBD antibody response rate was found in patients treated with ocrelizumab (40%, p < 0.0001) and fingolimod (85.7%, p = 0.0023) compared to HCWs and patients treated with cladribine or IFN-β. Anti-RBD antibody median titer was lower in patients treated with ocrelizumab (p < 0.0001), fingolimod (p < 0.0001), and cladribine (p = 0.010) compared to HCWs and IFN-β–treated patients. Serum neutralizing activity was present in all the HCWs tested and in only a minority of the fingolimod-treated patients (16.6%). T-cell–specific response was detected in the majority of patients with MS (62%), albeit with significantly lower IFN-γ levels compared to HCWs. The lowest frequency of T-cell response was found in fingolimod-treated patients (14.3%). T-cell–specific response correlated with lymphocyte count and anti-RBD antibody titer (ρ = 0.554, p < 0.0001 and ρ = 0.255, p = 0.0078 respectively). IFN-γ T-cell response was mediated by both CD4+ and CD8+ T cells. Discussion mRNA vaccines induce both humoral and cell-mediated specific immune responses against spike peptides in all HCWs and in the majority of patients with MS. These results carry relevant implications for managing vaccinations, suggesting promoting vaccination in all treated patients with MS. Classification of Evidence This study provides Class III data that SARS-CoV-2 mRNA vaccination induces both humoral and cell-mediated specific immune responses against viral spike proteins in a majority of patients with MS.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Hybrid immunity improves B cells and antibodies against SARS-CoV-2 variants

            The emergence of SARS-CoV-2 variants is jeopardizing the effectiveness of current vaccines and limiting the application of monoclonal antibody-based therapy for COVID-19 (refs. 1 , 2 ). Here we analysed the memory B cells of five naive and five convalescent people vaccinated with the BNT162b2 mRNA vaccine to investigate the nature of the B cell and antibody response at the single-cell level. Almost 6,000 cells were sorted, over 3,000 cells produced monoclonal antibodies against the spike protein and more than 400 cells neutralized the original SARS-CoV-2 virus first identified in Wuhan, China. The B.1.351 (Beta) and B.1.1.248 (Gamma) variants escaped almost 70% of these antibodies, while a much smaller portion was impacted by the B.1.1.7 (Alpha) and B.1.617.2 (Delta) variants. The overall loss of neutralization was always significantly higher in the antibodies from naive people. In part, this was due to the IGHV2-5;IGHJ4-1 germline, which was found only in people who were convalescent and generated potent and broadly neutralizing antibodies. Our data suggest that people who are seropositive following infection or primary vaccination will produce antibodies with increased potency and breadth and will be able to better control emerging SARS-CoV-2 variants. Single-cell-level analysis of memory B cells and their response to vaccination against all SARS-CoV-2 variants of concern in individuals who either had or had not been previously exposed to the virus.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Humoral responses after second and third SARS-CoV-2 vaccination in patients with immune-mediated inflammatory disorders on immunosuppressants: a cohort study

              Background Disease-specific studies have reported impaired humoral responses after SARS-CoV-2 vaccination in patients with immune-mediated inflammatory disorders treated with specific immunosuppressants. Disease-overarching studies, and data on recall responses and third vaccinations are scarce. Our primary objective was to investigate the effects of immunosuppressive monotherapies on the humoral immune response after SARS-CoV-2 vaccination in patients with prevalent immune-mediated inflammatory disorders. Methods We did a cohort study in participants treated in outpatient clinics in seven university hospitals and one rheumatology treatment centre in the Netherlands as well as participants included in two national cohort studies on COVID-19-related disease severity. We included patients aged older than 18 years, diagnosed with any of the prespecified immune-mediated inflammatory disorders, who were able to understand and complete questionnaires in Dutch. Participants with immune-mediated inflammatory disorders who were not on systemic immunosuppressants and healthy participants were included as controls. Anti-receptor binding domain IgG responses and neutralisation capacity were monitored following standard vaccination regimens and a three-vaccination regimen in subgroups. Hybrid immune responses—ie, vaccination after previous SARS-CoV-2 infection—were studied as a proxy for recall responses. Findings Between Feb 2 and Aug 1, 2021, we included 3222 participants in our cohort. Sera from 2339 participants, 1869 without and 470 participants with previous SARS-CoV-2 infection were analysed (mean age 49·9 years [SD 13·7]; 1470 [62·8%] females and 869 [37·2%] males). Humoral responses did not differ between disorders. Anti-CD20 therapy, sphingosine 1-phosphate receptor (S1P) modulators, and mycophenolate mofetil combined with corticosteroids were associated with lower relative risks for reaching seroconversion following standard vaccination (0·32 [95% CI 0·19–0·49] for anti-CD20 therapy, 0·35 [0·21–0·55] for S1P modulators, and 0·61 [0·40–0·90] for mycophenolate mofetil combined with corticosteroids). A third vaccination increased seroconversion for mycophenolate mofetil combination treatments (from 52·6% after the second vaccination to 89·5% after the third) but not significantly for anti-CD20 therapies (from 36·8% to 45·6%) and S1P modulators (from 35·5% to 48·4%). Most other immunosuppressant groups showed moderately reduced antibody titres after standard vaccination that did not increase after a third vaccination, although seroconversion rates and neutralisation capacity were unaffected. In participants with previous SARS-CoV-2 infection, SARS-CoV-2 antibodies were boosted after vaccination, regardless of immunosuppressive treatment. Interpretation Humoral responses following vaccination are impaired by specific immunosuppressants. After standard vaccination regimens, patients with immune-mediated inflammatory disorders taking most immunosuppressants show similar seroconversion to controls, although antibody titres might be moderately reduced. As neutralisation capacity and recall responses are also preserved in these patients, this is not likely to translate to loss of (short-term) protection. In patients on immunosuppressants showing poor humoral responses after standard vaccination regimens, a third vaccination resulted in additional seroconversion in patients taking mycophenolate mofetil combination treatments, whereas the effect of a third vaccination in patients on anti-CD20 therapy and S1P modulators was limited. Funding ZonMw (The Netherlands Organization for Health Research and Development).
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurol
                Front Neurol
                Front. Neurol.
                Frontiers in Neurology
                Frontiers Media S.A.
                1664-2295
                10 November 2022
                2022
                10 November 2022
                : 13
                : 1032830
                Affiliations
                [1] 1Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, Location AMC, University of Amsterdam , Amsterdam, Netherlands
                [2] 2Department of Neurology, Amsterdam UMC, Vrije Universiteit , Amsterdam, Netherlands
                [3] 3Department of Immunopathology, Sanquin Research and Landsteiner Laboratory , Amsterdam, Netherlands
                [4] 4Biologics Laboratory, Sanquin Diagnostic Services , Amsterdam, Netherlands
                [5] 5Swammerdam Institute for Life Sciences, University of Amsterdam , Amsterdam, Netherlands
                [6] 6Department of Pediatric Immunology, Rheumatology and Infectious Disease, Amsterdam UMC, Location AMC, Emma Children's Hospital, University of Amsterdam , Amsterdam, Netherlands
                [7] 7Department of Clinical Neurophysiology, St. Antonius Hospital , Nieuwegein, Netherlands
                Author notes

                Edited by: Hans-Peter Hartung, Heinrich Heine University of Düsseldorf, Germany

                Reviewed by: Itay Lotan, Rabin Medical Center, Israel; Giacomo Boffa, University of Genoa, Italy; Fabiana Marinelli, Fabrizio Spaziani Hospital, Italy

                *Correspondence: Zoé L. E. van Kempen z.vankempen@ 123456amsterdamumc.nl

                This article was submitted to Multiple Sclerosis and Neuroimmunology, a section of the journal Frontiers in Neurology

                Article
                10.3389/fneur.2022.1032830
                9686308
                36438945
                0a45a49b-5612-4e89-8802-62bd9d3c071a
                Copyright © 2022 van Dam, Hogenboom, Stalman, Kummer, Steenhuis, Keijser, Brinke, van Ham, Kuijpers, Rispens, Wieske, Eftimov, Strijbis, Killestein and van Kempen.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 31 August 2022
                : 21 October 2022
                Page count
                Figures: 1, Tables: 1, Equations: 0, References: 10, Pages: 6, Words: 3641
                Funding
                Funded by: Stichting MS Research, doi 10.13039/501100003000;
                Funded by: ZonMw, doi 10.13039/501100001826;
                Categories
                Neurology
                Brief Research Report

                Neurology
                multiple sclerosis,sars-cov-2,covid-19,disease modifying treatment,humoral response
                Neurology
                multiple sclerosis, sars-cov-2, covid-19, disease modifying treatment, humoral response

                Comments

                Comment on this article