2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Biofilm and wound healing: from bench to bedside

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The bubbling community of microorganisms, consisting of diverse colonies encased in a self-produced protective matrix and playing an essential role in the persistence of infection and antimicrobial resistance, is often referred to as a biofilm. Although apparently indolent, the biofilm involves not only inanimate surfaces but also living tissue, making it truly ubiquitous. The mechanism of biofilm formation, its growth, and the development of resistance are ever-intriguing subjects and are yet to be completely deciphered. Although an abundance of studies in recent years has focused on the various ways to create potential anti-biofilm and antimicrobial therapeutics, a dearth of a clear standard of clinical practice remains, and therefore, there is essentially a need for translating laboratory research to novel bedside anti-biofilm strategies that can provide a better clinical outcome. Of significance, biofilm is responsible for faulty wound healing and wound chronicity. The experimental studies report the prevalence of biofilm in chronic wounds anywhere between 20 and 100%, which makes it a topic of significant concern in wound healing. The ongoing scientific endeavor to comprehensively understand the mechanism of biofilm interaction with wounds and generate standardized anti-biofilm measures which are reproducible in the clinical setting is the challenge of the hour. In this context of “more needs to be done”, we aim to explore various effective and clinically meaningful methods currently available for biofilm management and how these tools can be translated into safe clinical practice.

          Related collections

          Most cited references180

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields

          Antimicrobial peptides (AMPs) are a class of small peptides that widely exist in nature and they are an important part of the innate immune system of different organisms. AMPs have a wide range of inhibitory effects against bacteria, fungi, parasites and viruses. The emergence of antibiotic-resistant microorganisms and the increasing of concerns about the use of antibiotics resulted in the development of AMPs, which have a good application prospect in medicine, food, animal husbandry, agriculture and aquaculture. This review introduces the progress of research on AMPs comprehensively and systematically, including their classification, mechanism of action, design methods, environmental factors affecting their activity, application status, prospects in various fields and problems to be solved. The research progress on antivirus peptides, especially anti-coronavirus (COVID-19) peptides, has been introduced given the COVID-19 pandemic worldwide in 2020.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biofilm infections, their resilience to therapy and innovative treatment strategies.

            Biofilm formation of microorganisms causes persistent tissue and foreign body infections resistant to treatment with antimicrobial agents. Up to 80% of human bacterial infections are biofilm associated; such infections are most frequently caused by Staphylococcus epidermidis, Pseudomonas aeruginosa, Staphylococcus aureus and Enterobacteria such as Escherichia coli. The accurate diagnosis of biofilm infections is often difficult, which prevents the appropriate choice of treatment. As biofilm infections significantly contribute to patient morbidity and substantial healthcare costs, novel strategies to treat these infections are urgently required. Nucleotide second messengers, c-di-GMP, (p)ppGpp and potentially c-di-AMP, are major regulators of biofilm formation and associated antibiotic tolerance. Consequently, different components of these signalling networks might be appropriate targets for antibiofilm therapy in combination with antibiotic treatment strategies. In addition, cyclic di-nucleotides are microbial-associated molecular patterns with an almost universal presence. Their conserved structures sensed by the eukaryotic host have a widespread effect on the immune system. Thus, cyclic di-nucleotides are also potential immunotherapeutic agents to treat antibiotic-resistant bacterial infections. © 2012 The Association for the Publication of the Journal of Internal Medicine.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found
              Is Open Access

              Mechanistic insight into diabetic wounds: Pathogenesis, molecular targets and treatment strategies to pace wound healing

                Bookmark

                Author and article information

                Contributors
                somprakas.surg@aiimsrishikesh.edu.in
                Journal
                Eur J Med Res
                Eur J Med Res
                European Journal of Medical Research
                BioMed Central (London )
                0949-2321
                2047-783X
                25 April 2023
                25 April 2023
                2023
                : 28
                : 157
                Affiliations
                [1 ]GRID grid.413618.9, ISNI 0000 0004 1767 6103, All India Institute of Medical Sciences, ; Rishikesh, 249203 India
                [2 ]GRID grid.411507.6, ISNI 0000 0001 2287 8816, Banaras Hindu University, ; Varanasi, India
                Article
                1121
                10.1186/s40001-023-01121-7
                10127443
                37098583
                09ead450-8335-43c1-b74d-974a7ea3ad33
                © The Author(s) 2023

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 25 October 2022
                : 14 April 2023
                Categories
                Review
                Custom metadata
                © The Author(s) 2023

                Medicine
                biofilm,bacteria,wound healing,quorum sensing,debridement
                Medicine
                biofilm, bacteria, wound healing, quorum sensing, debridement

                Comments

                Comment on this article