16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A murine neonatal model of necrotizing enterocolitis caused by anemia and red blood cell transfusions

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Role of lipid peroxidation derived 4-hydroxynonenal (4-HNE) in cancer: Focusing on mitochondria

          Oxidative stress-induced lipid peroxidation has been associated with human physiology and diseases including cancer. Overwhelming data suggest that reactive lipid mediators generated from this process, such as 4-hydroxynonenal (4-HNE), are biomarkers for oxidative stress and important players for mediating a number of signaling pathways. The biological effects of 4-HNE are primarily due to covalent modification of important biomolecules including proteins, DNA, and phospholipids containing amino group. In this review, we summarize recent progress on the role of 4-HNE in pathogenesis of cancer and focus on the involvement of mitochondria: generation of 4-HNE from oxidation of mitochondria-specific phospholipid cardiolipin; covalent modification of mitochondrial proteins, lipids, and DNA; potential therapeutic strategies for targeting mitochondrial ROS generation, lipid peroxidation, and 4-HNE.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neonatal intensive care unit stress is associated with brain development in preterm infants.

            Although many perinatal factors have been linked to adverse neurodevelopmental outcomes in very premature infants, much of the variation in outcome remains unexplained. The impact on brain development of 1 potential factor, exposure to stressors in the neonatal intensive care unit, has not yet been studied in a systematic, prospective manner. In this prospective cohort study of infants born at <30 weeks gestation, nurses were trained in recording procedures and cares. These recordings were used to derive Neonatal Infant Stressor Scale scores, which were employed to measure exposure to stressors. Magnetic resonance imaging (brain metrics, diffusion, and functional magnetic resonance imaging) and neurobehavioral examinations at term equivalent postmenstrual age were used to assess cerebral structure and function. Simple and partial correlations corrected for confounders, including immaturity and severity of illness, were used to explore these relations. Exposure to stressors was highly variable, both between infants and throughout a single infant's hospital course. Exposure to a greater number of stressors was associated with decreased frontal and parietal brain width, altered diffusion measures and functional connectivity in the temporal lobes, and abnormalities in motor behavior on neurobehavioral examination. Exposure to stressors in the Neonatal Intensive Care Unit is associated with regional alterations in brain structure and function. Further research into interventions that may decrease or mitigate exposure to stressors in the neonatal intensive care unit is warranted. Copyright © 2011 American Neurological Association.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transitory presence of myeloid-derived suppressor cells in neonates is critical for control of inflammation

              Myeloid-derived suppressor cells (MDSC) are pathologically activated and relatively immature myeloid cells, which are implicated in the immune regulation of many pathologic conditions 1,2 . Phenotypically and morphologically MDSC are similar to neutrophils (PMN-MDSC) and monocytes (M-MDSC). However, they have potent suppressive activity, a distinct gene expression profile, and biochemical characteristics 3 . None or very few MDSC are observed in steady state physiological conditions. Therefore, until recently, accumulation of MDSC was considered as a consequence of pathological process or pregnancy. Here, we report that MDSC with a potent ability to suppress T cells are present during the first weeks of life in mice and humans. MDSC suppressive activity was triggered by lactoferrin and mediated by nitric oxide, PGE2, and S100A9/A8 proteins. Newborn MDSC had a transcriptome similar to that of tumor MDSC, but with a strong up-regulation of an antimicrobial gene network and had potent antibacterial activity. MDSC played a critical role in control of experimental necrotizing enterocolitis (NEC) in newborn mice. MDSC in infants with very low-weight, which are prone to the development of NEC, had lower MDSC levels and suppressive activity than infants with normal weight. Thus, the transitory presence of MDSC may be critical for regulation of inflammation in newborns.
                Bookmark

                Author and article information

                Journal
                Nature Communications
                Nat Commun
                Springer Science and Business Media LLC
                2041-1723
                December 2019
                August 2 2019
                December 2019
                : 10
                : 1
                Article
                10.1038/s41467-019-11199-5
                31375667
                09cbee7b-49aa-4e74-9a29-1025a8cef564
                © 2019

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article