19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Group contribution method for thermodynamic analysis of complex metabolic networks.

      Biophysical Journal
      Computer Simulation, Models, Biological, Proteome, metabolism, Signal Transduction, physiology, Thermodynamics

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A new, to our knowledge, group contribution method based on the group contribution method of Mavrovouniotis is introduced for estimating the standard Gibbs free energy of formation (Delta(f)G'(o)) and reaction (Delta(r)G'(o)) in biochemical systems. Gibbs free energy contribution values were estimated for 74 distinct molecular substructures and 11 interaction factors using multiple linear regression against a training set of 645 reactions and 224 compounds. The standard error for the fitted values was 1.90 kcal/mol. Cross-validation analysis was utilized to determine the accuracy of the methodology in estimating Delta(r)G'(o) and Delta(f)G'(o) for reactions and compounds not included in the training set, and based on the results of the cross-validation, the standard error involved in these estimations is 2.22 kcal/mol. This group contribution method is demonstrated to be capable of estimating Delta(r)G'(o) and Delta(f)G'(o) for the majority of the biochemical compounds and reactions found in the iJR904 and iAF1260 genome-scale metabolic models of Escherichia coli and in the Kyoto Encyclopedia of Genes and Genomes and University of Minnesota Biocatalysis and Biodegradation Database. A web-based implementation of this new group contribution method is available free at http://sparta.chem-eng.northwestern.edu/cgi-bin/GCM/WebGCM.cgi.

          Related collections

          Author and article information

          Journal
          18645197
          2479599
          10.1529/biophysj.107.124784

          Chemistry
          Computer Simulation,Models, Biological,Proteome,metabolism,Signal Transduction,physiology,Thermodynamics

          Comments

          Comment on this article