10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Spiro donor–acceptor TADF emitters: naked TADF free from inhomogeneity caused by donor acceptor bridge bond disorder. Fast rISC and invariant photophysics in solid state hosts

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The molecular photophysics of 10-phenyl-10 H,10′ H-spiro[acridine-9,9′-anthracen]-10′-one (ACRSA) are used as an ideal molecule to probe how external factors affect the TADF and rISC mechanisms.

          Abstract

          We have studied the thermally activated delayed fluorescence (TADF) properties of the spiro-bridged donor–acceptor molecule, 10-phenyl-10 H,10′ H-spiro[acridine-9,9-anthracen]-10′-one, (ACRSA) in guest–host films and used it as a probe to explore the details of host effects on the TADF mechanism in typical OLED host materials. Linked by the rigid spiro C–C bond rather than a flexible C–N bond, we observe no inhomogeneous effects arising from distributions of donor–acceptor bridge dihedral angles. ACRSA displays no time dependent ‘apparent’ red shift of the prompt or delayed charge transfer (CT) emission. Moreover, using a range of different hosts, we show that the ground state dipole moment (dielectric value) of the host has very little effect on the ACRSA CT energy, i.e. there is no so-called ‘solid state solvatochromism’. This leads to weak stabilisation of the CT state in all hosts, but has a very small singlet triplet gap and very fast and efficient monoexponential rISC rates in films (reaching nearly 10 7 s −1 in zeonex host). We observe no power law decaying DF tail because there is no dispersion of the dihedral angle between donor and acceptor units. The previously much lower reported rISC rates in ACRSA are instead reattributed to intermolecular excimer states. The intermolecular species give rise to additional slow TADF contributions and broaden the overall CT emission band at 10% ACRSA loading and in neat films. Harnessing the rapid and homogenous rISC displayed by isolated ACRSA molecules may unlock higher efficiencies and – crucially – extended operational lifetimes in future TADF OLEDs.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Highly efficient organic light-emitting diodes from delayed fluorescence.

          The inherent flexibility afforded by molecular design has accelerated the development of a wide variety of organic semiconductors over the past two decades. In particular, great advances have been made in the development of materials for organic light-emitting diodes (OLEDs), from early devices based on fluorescent molecules to those using phosphorescent molecules. In OLEDs, electrically injected charge carriers recombine to form singlet and triplet excitons in a 1:3 ratio; the use of phosphorescent metal-organic complexes exploits the normally non-radiative triplet excitons and so enhances the overall electroluminescence efficiency. Here we report a class of metal-free organic electroluminescent molecules in which the energy gap between the singlet and triplet excited states is minimized by design, thereby promoting highly efficient spin up-conversion from non-radiative triplet states to radiative singlet states while maintaining high radiative decay rates, of more than 10(6) decays per second. In other words, these molecules harness both singlet and triplet excitons for light emission through fluorescence decay channels, leading to an intrinsic fluorescence efficiency in excess of 90 per cent and a very high external electroluminescence efficiency, of more than 19 per cent, which is comparable to that achieved in high-efficiency phosphorescence-based OLEDs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Triplet harvesting with 100% efficiency by way of thermally activated delayed fluorescence in charge transfer OLED emitters.

            Organic light-emitting diodes (OLEDs) have their performance limited by the number of emissive singlet states created upon charge recombination (25%). Recently, a novel strategy has been proposed, based on thermally activated up-conversion of triplet to singlet states, yielding delayed fluorescence (TADF), which greatly enhances electroluminescence. The energy barrier for this reverse intersystem crossing mechanism is proportional to the exchange energy (ΔEST ) between the singlet and triplet states; therefore, materials with intramolecular charge transfer (ICT) states, where it is known that the exchange energy is small, are perfect candidates. However, here it is shown that triplet states can be harvested with 100% efficiency via TADF, even in materials with ΔEST of more than 20 kT (where k is the Boltzmann constant and T is the temperature) at room temperature. The key role played by lone pair electrons in achieving this high efficiency in a series of ICT molecules is elucidated. The results show the complex photophysics of efficient TADF materials and give clear guidelines for designing new emitters.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Molecular Design Strategy of Organic Thermally Activated Delayed Fluorescence Emitters

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                JMCCCX
                Journal of Materials Chemistry C
                J. Mater. Chem. C
                Royal Society of Chemistry (RSC)
                2050-7526
                2050-7534
                January 27 2022
                2022
                : 10
                : 4
                : 1313-1325
                Affiliations
                [1 ]OEM Research group, Department of Physics, Durham University, South Road, Durham, DH1 3LE, UK
                Article
                10.1039/D1TC04484B
                08b1a51a-0969-4e2f-a67c-8a71d1fc69f3
                © 2022

                http://creativecommons.org/licenses/by/3.0/

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content51

                Cited by10

                Most referenced authors730