12
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      American Frontline Healthcare Personnel's Access to and Use of Personal Protective Equipment Early in the COVID-19 Pandemic

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Objectives:

          To quantify adequacy of personal protective equipment (PPE) for U.S. healthcare personnel (HCP) at the outset of the COVID-19 pandemic and its association with infection risk.

          Methods:

          March–May 2020 survey of the national Nurses’ Health Studies and the Growing Up Today study regarding self-reported PPE access, use, and reuse. COVID-19 endpoints included SARS-CoV-2 tests and COVID-19 status predicted from symptoms.

          Results:

          Nearly 22% of 22,232 frontline HCP interacting with COVID-19 patients reported sometimes or always lacking PPE. Fifty percent of HCP reported not needing respirators, including 13% of those working in COVID-19 units. Lack of PPE was cross-sectionally associated with two-fold or greater odds of COVID-19 among those who interacted with infected patients.

          Conclusion:

          These data show the need to improve the U.S. infection prevention culture of safety when confronting a novel pathogen.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          An interactive web-based dashboard to track COVID-19 in real time

          In December, 2019, a local outbreak of pneumonia of initially unknown cause was detected in Wuhan (Hubei, China), and was quickly determined to be caused by a novel coronavirus, 1 namely severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The outbreak has since spread to every province of mainland China as well as 27 other countries and regions, with more than 70 000 confirmed cases as of Feb 17, 2020. 2 In response to this ongoing public health emergency, we developed an online interactive dashboard, hosted by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University, Baltimore, MD, USA, to visualise and track reported cases of coronavirus disease 2019 (COVID-19) in real time. The dashboard, first shared publicly on Jan 22, illustrates the location and number of confirmed COVID-19 cases, deaths, and recoveries for all affected countries. It was developed to provide researchers, public health authorities, and the general public with a user-friendly tool to track the outbreak as it unfolds. All data collected and displayed are made freely available, initially through Google Sheets and now through a GitHub repository, along with the feature layers of the dashboard, which are now included in the Esri Living Atlas. The dashboard reports cases at the province level in China; at the city level in the USA, Australia, and Canada; and at the country level otherwise. During Jan 22–31, all data collection and processing were done manually, and updates were typically done twice a day, morning and night (US Eastern Time). As the outbreak evolved, the manual reporting process became unsustainable; therefore, on Feb 1, we adopted a semi-automated living data stream strategy. Our primary data source is DXY, an online platform run by members of the Chinese medical community, which aggregates local media and government reports to provide cumulative totals of COVID-19 cases in near real time at the province level in China and at the country level otherwise. Every 15 min, the cumulative case counts are updated from DXY for all provinces in China and for other affected countries and regions. For countries and regions outside mainland China (including Hong Kong, Macau, and Taiwan), we found DXY cumulative case counts to frequently lag behind other sources; we therefore manually update these case numbers throughout the day when new cases are identified. To identify new cases, we monitor various Twitter feeds, online news services, and direct communication sent through the dashboard. Before manually updating the dashboard, we confirm the case numbers with regional and local health departments, including the respective centres for disease control and prevention (CDC) of China, Taiwan, and Europe, the Hong Kong Department of Health, the Macau Government, and WHO, as well as city-level and state-level health authorities. For city-level case reports in the USA, Australia, and Canada, which we began reporting on Feb 1, we rely on the US CDC, the government of Canada, the Australian Government Department of Health, and various state or territory health authorities. All manual updates (for countries and regions outside mainland China) are coordinated by a team at Johns Hopkins University. The case data reported on the dashboard aligns with the daily Chinese CDC 3 and WHO situation reports 2 for within and outside of mainland China, respectively (figure ). Furthermore, the dashboard is particularly effective at capturing the timing of the first reported case of COVID-19 in new countries or regions (appendix). With the exception of Australia, Hong Kong, and Italy, the CSSE at Johns Hopkins University has reported newly infected countries ahead of WHO, with Hong Kong and Italy reported within hours of the corresponding WHO situation report. Figure Comparison of COVID-19 case reporting from different sources Daily cumulative case numbers (starting Jan 22, 2020) reported by the Johns Hopkins University Center for Systems Science and Engineering (CSSE), WHO situation reports, and the Chinese Center for Disease Control and Prevention (Chinese CDC) for within (A) and outside (B) mainland China. Given the popularity and impact of the dashboard to date, we plan to continue hosting and managing the tool throughout the entirety of the COVID-19 outbreak and to build out its capabilities to establish a standing tool to monitor and report on future outbreaks. We believe our efforts are crucial to help inform modelling efforts and control measures during the earliest stages of the outbreak.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Risk of COVID-19 among front-line health-care workers and the general community: a prospective cohort study

            Summary Background Data for front-line health-care workers and risk of COVID-19 are limited. We sought to assess risk of COVID-19 among front-line health-care workers compared with the general community and the effect of personal protective equipment (PPE) on risk. Methods We did a prospective, observational cohort study in the UK and the USA of the general community, including front-line health-care workers, using self-reported data from the COVID Symptom Study smartphone application (app) from March 24 (UK) and March 29 (USA) to April 23, 2020. Participants were voluntary users of the app and at first use provided information on demographic factors (including age, sex, race or ethnic background, height and weight, and occupation) and medical history, and subsequently reported any COVID-19 symptoms. We used Cox proportional hazards modelling to estimate multivariate-adjusted hazard ratios (HRs) of our primary outcome, which was a positive COVID-19 test. The COVID Symptom Study app is registered with ClinicalTrials.gov, NCT04331509. Findings Among 2 035 395 community individuals and 99 795 front-line health-care workers, we recorded 5545 incident reports of a positive COVID-19 test over 34 435 272 person-days. Compared with the general community, front-line health-care workers were at increased risk for reporting a positive COVID-19 test (adjusted HR 11·61, 95% CI 10·93–12·33). To account for differences in testing frequency between front-line health-care workers and the general community and possible selection bias, an inverse probability-weighted model was used to adjust for the likelihood of receiving a COVID-19 test (adjusted HR 3·40, 95% CI 3·37–3·43). Secondary and post-hoc analyses suggested adequacy of PPE, clinical setting, and ethnic background were also important factors. Interpretation In the UK and the USA, risk of reporting a positive test for COVID-19 was increased among front-line health-care workers. Health-care systems should ensure adequate availability of PPE and develop additional strategies to protect health-care workers from COVID-19, particularly those from Black, Asian, and minority ethnic backgrounds. Additional follow-up of these observational findings is needed. Funding Zoe Global, Wellcome Trust, Engineering and Physical Sciences Research Council, National Institutes of Health Research, UK Research and Innovation, Alzheimer's Society, National Institutes of Health, National Institute for Occupational Safety and Health, and Massachusetts Consortium on Pathogen Readiness.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Real-time tracking of self-reported symptoms to predict potential COVID-19

              A total of 2,618,862 participants reported their potential symptoms of COVID-19 on a smartphone-based app. Among the 18,401 who had undergone a SARS-CoV-2 test, the proportion of participants who reported loss of smell and taste was higher in those with a positive test result (4,668 of 7,178 individuals; 65.03%) than in those with a negative test result (2,436 of 11,223 participants; 21.71%) (odds ratio = 6.74; 95% confidence interval = 6.31–7.21). A model combining symptoms to predict probable infection was applied to the data from all app users who reported symptoms (805,753) and predicted that 140,312 (17.42%) participants are likely to have COVID-19.
                Bookmark

                Author and article information

                Journal
                J Occup Environ Med
                J Occup Environ Med
                JOEM
                Journal of Occupational and Environmental Medicine
                Lippincott Williams & Wilkins (Hagerstown, MD )
                1076-2752
                1536-5948
                November 2021
                7 July 2021
                7 July 2021
                : 63
                : 11
                : 913-920
                Affiliations
                Division of Women's Health, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts (Dr Rich-Edwards); Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts (Dr Rich-Edwards and Dr Chavarro); Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, Massachusetts (Dr Ding and Dr Chavarro); National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, Ohio (Dr Rocheleau, Dr Boiano, and Dr Lawson); Channing Division of Network Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts (Dr Kang and Dr Hart); Tufts University, Somerville, Massachusetts (Ms Becene); Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (Dr Nguyen and Dr Chan); Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts (Dr Hart).
                Author notes
                Address correspondence to: Janet W. Rich-Edwards, ScD, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115 ( jr33@ 123456partners.org ).
                Article
                JOEM-21-9038 00002
                10.1097/JOM.0000000000002308
                8562916
                34238908
                08b0b287-69c1-4b7f-b6c4-ba83b959524c
                Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American College of Occupational and Environmental Medicine.

                This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. http://creativecommons.org/licenses/by-nc-nd/4.0

                This article is made available via the PMC Open Access Subset for unrestricted re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the COVID-19 pandemic or until permissions are revoked in writing. Upon expiration of these permissions, PMC is granted a perpetual license to make this article available via PMC and Europe PMC, consistent with existing copyright protections.

                History
                Categories
                Original Articles
                Custom metadata
                TRUE

                covid-19,epidemiology,healthcare personnel,occupational health,personal protective equipment

                Comments

                Comment on this article