31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rhythmic complexity and predictive coding: a novel approach to modeling rhythm and meter perception in music

      review-article
      1 , 2 , 1
      Frontiers in Psychology
      Frontiers Media S.A.
      rhythm, meter, rhythmic complexity, predictive coding, pleasure

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Musical rhythm, consisting of apparently abstract intervals of accented temporal events, has a remarkable capacity to move our minds and bodies. How does the cognitive system enable our experiences of rhythmically complex music? In this paper, we describe some common forms of rhythmic complexity in music and propose the theory of predictive coding (PC) as a framework for understanding how rhythm and rhythmic complexity are processed in the brain. We also consider why we feel so compelled by rhythmic tension in music. First, we consider theories of rhythm and meter perception, which provide hierarchical and computational approaches to modeling. Second, we present the theory of PC, which posits a hierarchical organization of brain responses reflecting fundamental, survival-related mechanisms associated with predicting future events. According to this theory, perception and learning is manifested through the brain’s Bayesian minimization of the error between the input to the brain and the brain’s prior expectations. Third, we develop a PC model of musical rhythm, in which rhythm perception is conceptualized as an interaction between what is heard (“rhythm”) and the brain’s anticipatory structuring of music (“meter”). Finally, we review empirical studies of the neural and behavioral effects of syncopation, polyrhythm and groove, and propose how these studies can be seen as special cases of the PC theory. We argue that musical rhythm exploits the brain’s general principles of prediction and propose that pleasure and desire for sensorimotor synchronization from musical rhythm may be a result of such mechanisms.

          Related collections

          Most cited references101

          • Record: found
          • Abstract: found
          • Article: not found

          Behavioral dopamine signals.

          Lesioning and psychopharmacological studies suggest a wide range of behavioral functions for ascending midbrain dopaminergic systems. However, electrophysiological and neurochemical studies during specific behavioral tasks demonstrate a more restricted spectrum of dopamine-mediated changes. Substantial increases in dopamine-mediated activity, as measured by electrophysiology or voltammetry, are related to rewards and reward-predicting stimuli. A somewhat slower, distinct electrophysiological response encodes the uncertainty associated with rewards. Aversive events produce different, mostly slower, electrophysiological dopamine responses that consist predominantly of depressions. Additionally, more modest dopamine concentration fluctuations, related to punishment and movement, are seen at 200-18,000 times longer time courses using voltammetry and microdialysis in vivo. Using these responses, dopamine neurotransmission provides differential and heterogeneous information to subcortical and cortical brain structures about essential outcome components for approach behavior, learning and economic decision-making.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            On the computational architecture of the neocortex. II. The role of cortico-cortical loops.

            D. Mumford (1992)
            This paper is a sequel to an earlier paper which proposed an active role for the thalamus, integrating multiple hypotheses formed in the cortex via the thalamo-cortical loop. In this paper, I put forward a hypothesis on the role of the reciprocal, topographic pathways between two cortical areas, one often a 'higher' area dealing with more abstract information about the world, the other 'lower', dealing with more concrete data. The higher area attempts to fit its abstractions to the data it receives from lower areas by sending back to them from its deep pyramidal cells a template reconstruction best fitting the lower level view. The lower area attempts to reconcile the reconstruction of its view that it receives from higher areas with what it knows, sending back from its superficial pyramidal cells the features in its data which are not predicted by the higher area. The whole calculation is done with all areas working simultaneously, but with order imposed by synchronous activity in the various top-down, bottom-up loops. Evidence for this theory is reviewed and experimental tests are proposed. A third part of this paper will deal with extensions of these ideas to the frontal lobe.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Learning and inference in the brain.

              This article is about how the brain data mines its sensory inputs. There are several architectural principles of functional brain anatomy that have emerged from careful anatomic and physiologic studies over the past century. These principles are considered in the light of representational learning to see if they could have been predicted a priori on the basis of purely theoretical considerations. We first review the organisation of hierarchical sensory cortices, paying special attention to the distinction between forward and backward connections. We then review various approaches to representational learning as special cases of generative models, starting with supervised learning and ending with learning based upon empirical Bayes. The latter predicts many features, such as a hierarchical cortical system, prevalent top-down backward influences and functional asymmetries between forward and backward connections that are seen in the real brain. The key points made in article are: (i). hierarchical generative models enable the learning of empirical priors and eschew prior assumptions about the causes of sensory input that are inherent in non-hierarchical models. These assumptions are necessary for learning schemes based on information theory and efficient or sparse coding, but are not necessary in a hierarchical context. Critically, the anatomical infrastructure that may implement generative models in the brain is hierarchical. Furthermore, learning based on empirical Bayes can proceed in a biologically plausible way. (ii). The second point is that backward connections are essential if the processes generating inputs cannot be inverted, or the inversion cannot be parameterised. Because these processes involve many-to-one mappings, are non-linear and dynamic in nature, they are generally non-invertible. This enforces an explicit parameterisation of generative models (i.e. backward connections) to afford recognition and suggests that forward architectures, on their own, are not sufficient for perception. (iii). Finally, non-linearities in generative models, mediated by backward connections, require these connections to be modulatory, so that representations in higher cortical levels can interact to predict responses in lower levels. This is important in relation to functional asymmetries in forward and backward connections that have been demonstrated empirically.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Psychol
                Front Psychol
                Front. Psychol.
                Frontiers in Psychology
                Frontiers Media S.A.
                1664-1078
                01 October 2014
                2014
                : 5
                : 1111
                Affiliations
                [1] 1Center of Functionally Integrative Neuroscience, Aarhus University Hospital Aarhus, Denmark
                [2] 2Royal Academy of Music Aarhus/Aalborg, Denmark
                Author notes

                Edited by: Jessica A. Grahn, University of Western Ontario, Canada

                Reviewed by: Shinya Fujii, Sunnybrook Research Institute, Canada; Richard Ashley, Northwestern University, USA

                *Correspondence: Maria A. G. Witek, Center of Functionally Integrative Neuroscience, Aarhus University Hospital, Noerrebrogade 44, Building 10G,5th Floor, 8000 Aarhus C, Denmark e-mail: maria.witek@ 123456cfin.au.dk

                This article was submitted to Auditory Cognitive Neuroscience, a section of the journal Frontiers in Psychology.

                Article
                10.3389/fpsyg.2014.01111
                4181238
                25324813
                087a6f77-2362-4f58-9077-a35d380c576c
                Copyright © 2014 Vuust and Witek.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 24 April 2014
                : 12 September 2014
                Page count
                Figures: 4, Tables: 0, Equations: 0, References: 162, Pages: 14, Words: 0
                Categories
                Psychology
                Review Article

                Clinical Psychology & Psychiatry
                rhythm,meter,rhythmic complexity,predictive coding,pleasure
                Clinical Psychology & Psychiatry
                rhythm, meter, rhythmic complexity, predictive coding, pleasure

                Comments

                Comment on this article