77
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Functional and Genetic Characterization of Neuropeptide Y-Like Receptors in Aedes aegypti

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Female Aedes aegypti mosquitoes are the principal vector for dengue fever, causing 50–100 million infections per year, transmitted between human and mosquito by blood feeding. Ae. aegypti host-seeking behavior is known to be inhibited for three days following a blood meal by a hemolymph-borne humoral factor. Head Peptide-I is a candidate peptide mediating this suppression, but the mechanism by which this peptide alters mosquito behavior and the receptor through which it signals are unknown.

          Methodology/Principal Findings

          Head Peptide-I shows sequence similarity to short Neuropeptide-F peptides (sNPFs) that have been implicated in feeding behaviors and are known to signal through Neuropeptide Y (NPY)-Like Receptors (NPYLRs). We identified eight NPYLRs in the Ae. aegypti genome and screened each in a cell-based calcium imaging assay for sensitivity against a panel of peptides. Four of the Ae. aegypti NPYLRs responded to one or more peptide ligands, but only NYPLR1 responded to Head Peptide-I as well as sNPFs. Two NPYLR1 homologues identified in the genome of the Lyme disease vector, Ixodes scapularis, were also sensitive to Head Peptide-I. Injection of synthetic Head Peptide-I and sNPF-3 inhibited host-seeking behavior in non-blood-fed female mosquitoes, whereas control injections of buffer or inactive Head Peptide-I [Cys10] had no effect. To ask if NPYLR1 is necessary for blood-feeding-induced host-seeking inhibition, we used zinc-finger nucleases to generate five independent npylr1 null mutant strains and tested them for behavioral abnormalities. npylr1 mutants displayed normal behavior in locomotion, egg laying, sugar feeding, blood feeding, host seeking, and inhibition of host seeking after a blood meal.

          Conclusions

          In this work we deorphanized four Ae. aegypti NPYLRs and identified NPYLR1 as a candidate sNPF receptor that is also sensitive to Head Peptide-I. Yet npylr1 alone is not required for host-seeking inhibition and we conclude that other receptors, additional peptides, or both, regulate this important behavior.

          Author Summary

          Female mosquitoes are responsible for spreading many deadly infectious diseases including malaria, dengue fever, and yellow fever. These mosquitoes require a blood meal to produce eggs and preferentially feed on humans, thereby spreading disease as they feed. Females of the dengue vector mosquito Aedes aegypti undergo a natural change in behavior after a blood meal in which they lose attraction to humans for over three days. We are interested in understanding this natural behavioral inhibition because it may provide an opportunity to control mosquito blood-feeding behavior. Previous work showed that a small protein called Head Peptide-I could mimic this behavioral inhibition when injected into non-blood-fed females, which normally show very high attraction to humans. In this work, we set out to find the Head Peptide-I receptor and ask if it causes this behavioral inhibition. By testing eight different candidate receptors, we found one called NPYLR1 that responds to Head-Peptide I but is much more sensitive to another peptide called sNPF-3. We made mutant mosquitoes that lack the npylr1 gene and found that the mutants showed normal sugar- and blood-feeding behavior. We conclude that there must be additional receptors and/or peptides that together cause this long-lasting inhibition of female mosquito attraction to humans.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Insect olfactory receptors are heteromeric ligand-gated ion channels.

          In insects, each olfactory sensory neuron expresses between one and three ligand-binding members of the olfactory receptor (OR) gene family, along with the highly conserved and broadly expressed Or83b co-receptor. The functional insect OR consists of a heteromeric complex of unknown stoichiometry but comprising at least one variable odorant-binding subunit and one constant Or83b family subunit. Insect ORs lack homology to G-protein-coupled chemosensory receptors in vertebrates and possess a distinct seven-transmembrane topology with the amino terminus located intracellularly. Here we provide evidence that heteromeric insect ORs comprise a new class of ligand-activated non-selective cation channels. Heterologous cells expressing silkmoth, fruitfly or mosquito heteromeric OR complexes showed extracellular Ca2+ influx and cation-non-selective ion conductance on stimulation with odorant. Odour-evoked OR currents are independent of known G-protein-coupled second messenger pathways. The fast response kinetics and OR-subunit-dependent K+ ion selectivity of the insect OR complex support the hypothesis that the complex between OR and Or83b itself confers channel activity. Direct evidence for odorant-gated channels was obtained by outside-out patch-clamp recording of Xenopus oocyte and HEK293T cell membranes expressing insect OR complexes. The ligand-gated ion channel formed by an insect OR complex seems to be the basis for a unique strategy that insects have acquired to respond to the olfactory environment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain.

            A long-term goal in the field of restriction-modification enzymes has been to generate restriction endonucleases with novel sequence specificities by mutating or engineering existing enzymes. This will avoid the increasingly arduous task of extensive screening of bacteria and other microorganisms for new enzymes. Here, we report the deliberate creation of novel site-specific endonucleases by linking two different zinc finger proteins to the cleavage domain of Fok I endonuclease. Both fusion proteins are active and under optimal conditions cleave DNA in a sequence-specific manner. Thus, the modular structure of Fok I endonuclease and the zinc finger motifs makes it possible to create "artificial" nucleases that will cut DNA near a predetermined site. This opens the way to generate many new enzymes with tailor-made sequence specificities desirable for various applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mosquito sugar feeding and reproductive energetics.

              Sugar feeding is a fundamental characteristic of mosquito life. Most evidence indicates frequent ingestion by both sexes and all ages of mosquitoes of plant sugar, usually as floral and extrafloral nectar and honeydew. Energetically, sugar and blood are interchangeable; females of some species have evolved independence from one or the other, but most need blood to develop eggs and sugar to survive, to fly, and to enhance reproduction. Mosquitoes' commitment to sugar is further illustrated by a wealth of behavioral, structural, and physiological specializations for finding, feeding on, and processing it. Blood and sugar feeding activities are antagonistic and mutually exclusive, owing to conflicting demands, yet they support the same goals and often share the same activity period. The rules by which females make food-choice decisions have been inadequately explored, and we still lack convincing evidence that sugar availability in nature varies sufficiently to affect mosquito populations.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, USA )
                1935-2727
                1935-2735
                October 2013
                10 October 2013
                : 7
                : 10
                : e2486
                Affiliations
                [1 ]Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, New York, United States of America
                [2 ]Howard Hughes Medical Institute, The Rockefeller University, New York, New York, United States of America
                Johns Hopkins Bloomberg School of Public Health, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: JL LBV. Performed the experiments: JL. Analyzed the data: JL. Contributed reagents/materials/analysis tools: JL LLB. Wrote the paper: JL LBV. Developed the fluorescence quantification technique used in Figure 7: LLB.

                Article
                PNTD-D-13-01117
                10.1371/journal.pntd.0002486
                3794971
                24130914
                0879341f-7cd4-4bee-a0a2-6b44d6aa56b5
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 23 July 2013
                : 6 September 2013
                Page count
                Pages: 16
                Funding
                JL was supported by a Ruth L. Kirschstein National Research Service Awards for Individual Predoctoral Fellows from the National Institutes of Health (5F31DC011999-03). LLB was supported by the National Science Foundation Graduate Research Fellowship Program (DGE-0813965). LBV is an investigator of the Howards Hughes Medical Institute. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article