108
views
0
recommends
+1 Recommend
0 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Impact of Dental Implant Surface Modifications on Osseointegration

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective. The aim of this paper is to review different surface modifications of dental implants and their effect on osseointegration. Common marketed as well as experimental surface modifications are discussed. Discussion. The major challenge for contemporary dental implantologists is to provide oral rehabilitation to patients with healthy bone conditions asking for rapid loading protocols or to patients with quantitatively or qualitatively compromised bone. These charging conditions require advances in implant surface design. The elucidation of bone healing physiology has driven investigators to engineer implant surfaces that closely mimic natural bone characteristics. This paper provides a comprehensive overview of surface modifications that beneficially alter the topography, hydrophilicity, and outer coating of dental implants in order to enhance osseointegration in healthy as well as in compromised bone. In the first part, this paper discusses dental implants that have been successfully used for a number of years focusing on sandblasting, acid-etching, and hydrophilic surface textures. Hereafter, new techniques like Discrete Crystalline Deposition, laser ablation, and surface coatings with proteins, drugs, or growth factors are presented. Conclusion. Major advancements have been made in developing novel surfaces of dental implants. These innovations set the stage for rehabilitating patients with high success and predictable survival rates even in challenging conditions.

          Related collections

          Most cited references120

          • Record: found
          • Abstract: found
          • Article: not found

          Surface treatments of titanium dental implants for rapid osseointegration.

          The osseointegration rate of titanium dental implants is related to their composition and surface roughness. Rough-surfaced implants favor both bone anchoring and biomechanical stability. Osteoconductive calcium phosphate coatings promote bone healing and apposition, leading to the rapid biological fixation of implants. The different methods used for increasing surface roughness or applying osteoconductive coatings to titanium dental implants are reviewed. Surface treatments, such as titanium plasma-spraying, grit-blasting, acid-etching, anodization or calcium phosphate coatings, and their corresponding surface morphologies and properties are described. Most of these surfaces are commercially available and have proven clinical efficacy (>95% over 5 years). The precise role of surface chemistry and topography on the early events in dental implant osseointegration remain poorly understood. In addition, comparative clinical studies with different implant surfaces are rarely performed. The future of dental implantology should aim to develop surfaces with controlled and standardized topography or chemistry. This approach will be the only way to understand the interactions between proteins, cells and tissues, and implant surfaces. The local release of bone stimulating or resorptive drugs in the peri-implant region may also respond to difficult clinical situations with poor bone quality and quantity. These therapeutic strategies should ultimately enhance the osseointegration process of dental implants for their immediate loading and long-term success.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs.

            The purpose of the present study was to evaluate the influence of different surface characteristics on bone integration of titanium implants. Hollow-cylinder implants with six different surfaces were placed in the metaphyses of the tibia and femur in six miniature pigs. After 3 and 6 weeks, the implants with surrounding bone were removed and analyzed in undecalcified transverse sections. The histologic examination revealed direct bone-implant contact for all implants. However, the morphometric analyses demonstrated significant differences in the percentage of bone-implant contact, when measured in cancellous bone. Electropolished as well as the sandblasted and acid pickled (medium grit; HF/HNO3) implant surfaces had the lowest percentage of bone contact with mean values ranging between 20 and 25%. Sandblasted implants with a large grit and titanium plasma-sprayed implants demonstrated 30-40% mean bone contact. The highest extent of bone-implant interface was observed in sandblasted and acid attacked surfaces (large grit; HCl/H2SO4) with mean values of 50-60%, and hydroxylapatite (HA)-coated implants with 60-70%. However, the HA coating consistently revealed signs of resorption. It can be concluded that the extent of bone-implant interface is positively correlated with an increasing roughness of the implant surface.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Advancing dental implant surface technology--from micron- to nanotopography.

              Current trends in clinical dental implant therapy include use of endosseous dental implant surfaces embellished with nanoscale topographies. The goal of this review is to consider the role of nanoscale topographic modification of titanium substrates for the purpose of improving osseointegration. Nanotechnology offers engineers and biologists new ways of interacting with relevant biological processes. Moreover, nanotechnology has provided means of understanding and achieving cell specific functions. The various techniques that can impart nanoscale topographic features to titanium endosseous implants are described. Existing data supporting the role of nanotopography suggest that critical steps in osseointegration can be modulated by nanoscale modification of the implant surface. Important distinctions between nanoscale and micron-scale modification of the implant surface are presently considered. The advantages and disadvantages of nanoscale modification of the dental implant surface are discussed. Finally, available data concerning the current dental implant surfaces that utilize nanotopography in clinical dentistry are described. Nanoscale modification of titanium endosseous implant surfaces can alter cellular and tissue responses that may benefit osseointegration and dental implant therapy.
                Bookmark

                Author and article information

                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi Publishing Corporation
                2314-6133
                2314-6141
                2016
                11 July 2016
                : 2016
                : 6285620
                Affiliations
                1Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
                2Department of Cranio-Maxillofacial and Oral Surgery, University of Zurich, 8032 Zurich, Switzerland
                3Department of Oral Surgery, Heinrich Heine University, 40225 Düsseldorf, Germany
                4Private Practice, 9900 Lienz, Austria
                Author notes
                *Tobias Ebker: t.ebker@ 123456uke.de

                Academic Editor: Shinji Kuroda

                Author information
                http://orcid.org/0000-0003-1830-6940
                Article
                10.1155/2016/6285620
                4958483
                27478833
                085a587c-2a34-4a2a-85c1-716e4a954e10
                Copyright © 2016 Ralf Smeets et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 28 December 2015
                : 22 May 2016
                : 6 June 2016
                Categories
                Review Article

                Comments

                Comment on this article