Non-orthogonal multiple access (NOMA) is a technology that leverages user channel gains, offers higher spectral efficiency, improves user fairness, better cell-edge throughput, increased reliability, and low latency, making it a potential technology for the next generation of cellular networks. The application of NOMA in the power domain (NOMA-PD) with multiple-input multiple-output (MIMO) and other emerging technologies allows to achieve the demand for higher data rates in next-generation networks. This survey aims to funnel down NOMA MIMO resource allocation issues and different optimization problems that exist in the literature to enhance the data rate. We examine the most recent NOMA-MIMO clustering, power allocation, and joint allocation schemes and analyze various parameters used in optimization methods to design 5G systems. We finally identify a promising research problem based on the signal-to-interference-plus-noise ratio (SINR) parameter in the context of NOMA-PD with MIMO configuration.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.