0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Durable superamphiphobic silica aerogel surfaces for the culture of 3D cellular spheroids

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The 3D multicellular spheroids with intact cell–cell junctions have major roles in biological research by virtue of their unique advantage of mimicking the cellular physiological environments. In this work, a durable superamphiphobic silica aerogel surface (SSAS) has been fabricated for the upward culture of 3D multicellular spheroids. Poly(3,4-ethylenedioxythiophene) (PEDOT) was first electrodeposited on a conductive steel mesh as a first template for porous silica coating. Soot particles were then applied as a second template to construct a cauliflower-like silica aerogel nanostructure. After fluorination, a hierarchical structure with re-entrant curvature was finally fabricated as a durable superamphiphobic surface. This superamphiphobic surface also presented excellent antifouling towards biomacromolecules and cells, which has been demonstrated by the successful upward culture of cell spheroids. The upward culture makes the observation of cellular behavior in situ possible, holding great potential for 3D cellular evaluation in vitro.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors.

          Three-dimensional (3D) cell culture systems have gained increasing interest in drug discovery and tissue engineering due to their evident advantages in providing more physiologically relevant information and more predictive data for in vivo tests. In this review, we discuss the characteristics of 3D cell culture systems in comparison to the two-dimensional (2D) monolayer culture, focusing on cell growth conditions, cell proliferation, population, and gene and protein expression profiles. The innovations and development in 3D culture systems for drug discovery over the past 5 years are also reviewed in the article, emphasizing the cellular response to different classes of anticancer drugs, focusing particularly on similarities and differences between 3D and 2D models across the field. The progression and advancement in the application of 3D cell cultures in cell-based biosensors is another focal point of this review.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Candle soot as a template for a transparent robust superamphiphobic coating.

            Coating is an essential step in adjusting the surface properties of materials. Superhydrophobic coatings with contact angles greater than 150° and roll-off angles below 10° for water have been developed, based on low-energy surfaces and roughness on the nano- and micrometer scales. However, these surfaces are still wetted by organic liquids such as surfactant-based solutions, alcohols, or alkanes. Coatings that are simultaneously superhydrophobic and superoleophobic are rare. We designed an easily fabricated, transparent, and oil-rebounding superamphiphobic coating. A porous deposit of candle soot was coated with a 25-nanometer-thick silica shell. The black coating became transparent after calcination at 600°C. After silanization, the coating was superamphiphobic and remained so even after its top layer was damaged by sand impingement.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rapid generation of single-tumor spheroids for high-throughput cell function and toxicity analysis.

              Spheroids are widely used in biology because they provide an in vitro 3-dimensional (3D) model to study proliferation, cell death, differentiation, and metabolism of cells in tumors and the response of tumors to radiotherapy and chemotherapy. The methods of generating spheroids are limited by size heterogeneity, long cultivation time, or mechanical accessibility for higher throughput fashion. The authors present a rapid method to generate single spheroids in suspension culture in individual wells. A defined number of cells ranging from 1000 to 20,000 were seeded into wells of poly-HEMA-coated, 96-well, round-or conical-bottom plates in standard medium and centrifuged for 10 min at 1000 g. This procedure generates single spheroids in each well within a 24-h culture time with homogeneous sizes, morphologies, and stratification of proliferating cells in the rim and dying cells in the core region. Because a large number of tumor cell lines form only loose aggregates when cultured in 3D, the authors also performed a screen for medium additives to achieve a switch from aggregate to spheroid morphology. Small quantities of the basement membrane extract Matrigel, added to the culture medium prior to centrifugation, most effectively induced compact spheroid formation. The compact spheroid morphology is evident as early as 24 h after centrifugation in a true suspension culture. Twenty tumor cell lines of different lineages have been used to successfully generate compact, single spheroids with homogenous size in 96-well plates and are easily accessible for subsequent functional analysis.
                Bookmark

                Author and article information

                Journal
                Natl Sci Rev
                Natl Sci Rev
                nsr
                National Science Review
                Oxford University Press
                2095-5138
                2053-714X
                November 2019
                17 July 2019
                17 July 2019
                : 6
                : 6
                : 1255-1265
                Affiliations
                [1 ] School of Materials Science, Institute of Energy Equipment Materials, Shanghai Dianji University , Shanghai 201306, China
                [2 ] School of Chemical Science and Engineering, Tongji University , Shanghai 200092, China
                [3 ] School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University , Shanghai 200240, China
                Author notes
                Corresponding author. E-mail: qhlu@ 123456sjtu.edu.cn

                Equally contributed to this work.

                Article
                nwz095
                10.1093/nsr/nwz095
                8291414
                07ac40e9-fa45-426e-bdc4-9acb76078d9a
                © The Author(s) 2019. Published by Oxford University Press on behalf of China Science Publishing & Media Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 06 June 2019
                : 17 June 2019
                : 07 April 2019
                Page count
                Pages: 11
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Award ID: 51573089
                Award ID: 21704076
                Funded by: China Postdoctoral Innovation Talent Project
                Award ID: BX201700171
                Funded by: China Postdoctoral Science Foundation 10.13039/501100002858
                Award ID: 188682
                Categories
                Research Article
                Materials Science

                cell spheroids,superamphiphobicity,durability,electrochemistry,silica aerogel

                Comments

                Comment on this article