33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Humanized mice : are we there yet?

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Animal models have been instrumental in increasing the understanding of human physiology, particularly immunity. However, these animal models have been limited by practical considerations and genetic diversity. The creation of humanized mice that carry partial or complete human physiological systems may help overcome these obstacles. The National Institute of Allergy and Infectious Diseases convened a workshop on humanized mouse models for immunity in Bethesda, MD, on June 13–14, 2005, during which researchers discussed the benefits and limitations of existing animal models and offered insights into the development of future humanized mouse models.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Complete reconstitution of human lymphocytes from cord blood CD34+ cells using the NOD/SCID/gammacnull mice model.

          Establishment of an assay capable of generating all classes of human lymphocytes from hematopoietic stem cells (HSCs) will provide new insight into the mechanism of human lymphopoiesis. We report ontogenic, functional, and histologic examination results of reconstituted human lymphocytes in NOD/SCID/ gammacnull mice after the transplantation of human cord blood (CB) CD34+ cells. After transplantation, human B, natural killer (NK), and T cells were invariably identified in these mice, even though no human tissues were cotransplanted. Immature B cells resided mainly in bone marrow (BM), whereas mature B cells with surface immunoglobulins were preferentially found in spleen. NK cells were identified in BM and spleen. T cells were observed in various lymphoid organs, but serial examinations after transplantation confirmed human T lymphopoiesis occurring in the thymus. These human lymphocytes were also functionally competent. Human immunoglobulin M (IgM), IgA, and IgG were detected in the sera of these mice. T cells showed a diverse repertoire of T-cell-receptor Vbeta (TCR Vbeta) chains, proliferated in response to phytohemagglutinin, and were cytotoxic against cell lines. NK activity was demonstrated using the K562 cell line. Immunohistochemical analysis revealed that human lymphocytes formed organized structures in spleen and thymus that were analogous to those seen in humans. In the thymus, CD4 and CD8 double-positive T cells were predominant and coexpressed CD1a and Ki-67, thereby supporting the notion that T lymphopoiesis was taking place. NOD/SCID/ gammacnull mice provide a unique model to investigate human lymphopoiesis without the cotransplantation of human tissues.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            SCID mouse models of human stem cell engraftment.

            The discovery of the severe combined immunodeficiency (scid) mouse mutation has provided a tool for establishment of small animal models as hosts for the in vivo analysis of normal and malignant human pluripotent hemopoietic stem cells. Intravenous injection of irradiated scid mice with human bone marrow, cord blood, or G-CSF cytokine-mobilized peripheral blood mononuclear cells, all rich in human hemopoietic stem cell activity, results in the engraftment of a human hemopoietic system in the murine recipient. This model has been used to identify a pluripotent stem cell, termed "scid-repopulating cell" (SRC) that is more primitive than any of the hemopoietic stem cell populations identified using the currently available in vitro methodology. In this review, we describe the development and use of this model system, termed Hu-SRC-SCID, and summarize the discoveries that have resulted from the investigation of human stem cells in this model. Finally, we detail the recent extension of the original Hu-SRC-SCID model system based on the C.B-17-scid mouse as the murine host to the Hu-SRC-NOD-SCID model based on the NOD-scid mouse as the host. The engraftment of human stem cells in the Hu-SRC-NOD-SCID model is enhanced over that observed in the Hu-SRC-SCID model and results in exceptionally high levels of human hemopoietic cells in the murine recipient. Future directions to further improve the Hu-SRC-NOD-SCID model system and the potential utility of this model in the preclinical and diagnostic arenas of hematology and oncology are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Functional human T lymphocyte development from cord blood CD34+ cells in nonobese diabetic/Shi-scid, IL-2 receptor gamma null mice.

              An experimental model for human T lymphocyte development from hemopoietic stem cells is necessary to study the complex processes of T cell differentiation in vivo. In this study, we report a newly developed nonobese diabetic (NOD)/Shi-scid, IL-2Rgamma null (NOD/SCID/gamma(c)(null)) mouse model for human T lymphopoiesis. When these mice were transplanted with human cord blood CD34(+) cells, the mice reproductively developed human T cells in their thymus and migrated into peripheral lymphoid organs. Furthermore, these T cells bear polyclonal TCR-alphabeta, and respond not only to mitogenic stimuli, such as PHA and IL-2, but to allogenic human cells. These results indicate that functional human T lymphocytes can be reconstituted from CD34(+) cells in NOD/SCID/gamma(c)(null) mice. This newly developed mouse model is expected to become a useful tool for the analysis of human T lymphopoiesis and immune response, and an animal model for studying T lymphotropic viral infections, such as HIV.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                21 November 2005
                : 202
                : 10
                : 1307-1311
                Affiliations
                [a ]F.M. is at Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892.
                [b ]M.G.M. is at Institute for Research in Biomedicine, CH-6500 Bellinzona, Switzerland.
                [c ]A.K.P. is at Baylor Institute for Immunology Research, Dallas, TX 75204.
                [d ]L.D.S. is at The Jackson Laboratory, Bar Harbor, ME 04609.
                Author notes
                Article
                20051547
                10.1084/jem.20051547
                2212979
                16301740
                0752023a-591e-4653-b77e-99e83a5b92d6
                Copyright © 2005, The Rockefeller University Press
                History
                Categories
                Meeting Review

                Medicine
                Medicine

                Comments

                Comment on this article