6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Recent Developments in Rice Molecular Breeding for Tolerance to Heavy Metal Toxicity

      , , ,
      Agriculture
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Heavy metal toxicity generally refers to the negative impact on the environment, humans, and other living organisms caused by exposure to heavy metals (HMs). Heavy metal poisoning is the accumulation of HMs in the soft tissues of organisms in a toxic amount. HMs bind to certain cells and prevent organs from functioning. Symptoms of HM poisoning can be life-threatening and not only cause irreversible damage to humans and other organisms; but also significantly reduce agricultural yield. Symptoms and physical examination findings associated with HM poisoning vary depending on the metal accumulated. Many HMs, such as zinc, copper, chromium, iron, and manganese, are present at extremely low levels but are essential for the functioning of plants. However, if these metals accumulate in the plants in sufficient concentrations to cause poisoning, serious damage can occur. Rice is consumed around the world as a staple food and incidents of HM pollution often occur in rice-growing areas. In many rice-producing countries, cadmium (Cd), arsenic (As), and lead (Pb) have been recognized as commonly widespread HMs contaminating rice fields worldwide. In addition to mining and irrigation activities, the use of fertilizers and pesticides has also contributed significantly to HM contamination of rice-growing soils around the world. A number of QTLs associated with HM stress signals from various intermediary molecules have been reported to activate various transcription factors (TFs). Some antioxidant enzymes have been studied which contribute to the scavenging of reactive oxygen species, ultimately leading to stress tolerance in rice. Genome engineering and advanced editing techniques have been successfully applied to rice to improve metal tolerance and reduce HM accumulation in grains. In this review article, recent developments and progress in the molecular science for the induction of HM stress tolerance, including reduced metal uptake, compartmentalized transportation, gene-regulated signaling, and reduced accumulation or diversion of HM particles to plant parts other than grains, are discussed in detail, with particular emphasis on rice.

          Related collections

          Most cited references127

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation

          Heavy metals are well-known environmental pollutants due to their toxicity, persistence in the environment, and bioaccumulative nature. Their natural sources include weathering of metal-bearing rocks and volcanic eruptions, while anthropogenic sources include mining and various industrial and agricultural activities. Mining and industrial processing for extraction of mineral resources and their subsequent applications for industrial, agricultural, and economic development has led to an increase in the mobilization of these elements in the environment and disturbance of their biogeochemical cycles. Contamination of aquatic and terrestrial ecosystems with toxic heavy metals is an environmental problem of public health concern. Being persistent pollutants, heavy metals accumulate in the environment and consequently contaminate the food chains. Accumulation of potentially toxic heavy metals in biota causes a potential health threat to their consumers including humans. This article comprehensively reviews the different aspects of heavy metals as hazardous materials with special focus on their environmental persistence, toxicity for living organisms, and bioaccumulative potential. The bioaccumulation of these elements and its implications for human health are discussed with a special coverage on fish, rice, and tobacco. The article will serve as a valuable educational resource for both undergraduate and graduate students and for researchers in environmental sciences. Environmentally relevant most hazardous heavy metals and metalloids include Cr, Ni, Cu, Zn, Cd, Pb, Hg, and As. The trophic transfer of these elements in aquatic and terrestrial food chains/webs has important implications for wildlife and human health. It is very important to assess and monitor the concentrations of potentially toxic heavy metals and metalloids in different environmental segments and in the resident biota. A comprehensive study of the environmental chemistry and ecotoxicology of hazardous heavy metals and metalloids shows that steps should be taken to minimize the impact of these elements on human health and the environment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Heavy Metal Tolerance in Plants: Role of Transcriptomics, Proteomics, Metabolomics, and Ionomics

            Heavy metal contamination of soil and water causing toxicity/stress has become one important constraint to crop productivity and quality. This situation has further worsened by the increasing population growth and inherent food demand. It has been reported in several studies that counterbalancing toxicity due to heavy metal requires complex mechanisms at molecular, biochemical, physiological, cellular, tissue, and whole plant level, which might manifest in terms of improved crop productivity. Recent advances in various disciplines of biological sciences such as metabolomics, transcriptomics, proteomics, etc., have assisted in the characterization of metabolites, transcription factors, and stress-inducible proteins involved in heavy metal tolerance, which in turn can be utilized for generating heavy metal-tolerant crops. This review summarizes various tolerance strategies of plants under heavy metal toxicity covering the role of metabolites (metabolomics), trace elements (ionomics), transcription factors (transcriptomics), various stress-inducible proteins (proteomics) as well as the role of plant hormones. We also provide a glance of some strategies adopted by metal-accumulating plants, also known as “metallophytes.”
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Heavy metals in agricultural soils of the European Union with implications for food safety

              Soil plays a central role in food safety as it determines the possible composition of food and feed at the root of the food chain. However, the quality of soil resources as defined by their potential impact on human health by propagation of harmful elements through the food chain has been poorly studied in Europe due to the lack of data of adequate detail and reliability. The European Union's first harmonized topsoil sampling and coherent analytical procedure produced trace element measurements from approximately 22,000 locations. This unique collection of information enables a reliable overview of the concentration of heavy metals, also referred to as metal(loid)s including As, Cd, Cr, Cu, Hg, Pb, Zn, Sb. Co, and Ni. In this article we propose that in some cases (e.g. Hg and Cd) the high concentrations of soil heavy metal attributed to human activity can be detected at a regional level. While the immense majority of European agricultural land can be considered adequately safe for food production, an estimated 6.24% or 137,000km(2) needs local assessment and eventual remediation action.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                ABSGFK
                Agriculture
                Agriculture
                MDPI AG
                2077-0472
                May 2023
                April 25 2023
                : 13
                : 5
                : 944
                Article
                10.3390/agriculture13050944
                06e7e682-d483-4032-aab5-7e0cd9f8294c
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article