31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Personalized Drug Therapy: Innovative Concept Guided With Proteoformics

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Personalized medicine can reduce adverse effects, enhance drug efficacy, and optimize treatment outcomes, which represents the essence of personalized medicine in the pharmacy field. Protein drugs are crucial in the field of personalized drug therapy and are currently the mainstay, which possess higher target specificity and biological activity than small-molecule chemical drugs, making them efficient in regulating disease-related biological processes, and have significant potential in the development of personalized drugs. Currently, protein drugs are designed and developed for specific protein targets based on patient-specific protein data. However, due to the rapid development of two-dimensional gel electrophoresis and mass spectrometry, it is now widely recognized that a canonical protein actually includes multiple proteoforms, and the differences between these proteoforms will result in varying responses to drugs. The variation in the effects of different proteoforms can be significant and the impact can even alter the intended benefit of a drug, potentially making it harmful instead of lifesaving. As a result, we propose that protein drugs should shift from being targeted through the lens of protein (proteomics) to being targeted through the lens of proteoform (proteoformics). This will enable the development of personalized protein drugs that are better equipped to meet patients' specific needs and disease characteristics. With further development in the field of proteoformics, individualized drug therapy, especially personalized protein drugs aimed at proteoforms as a drug target, will improve the understanding of disease mechanisms, discovery of new drug targets and signaling pathways, provide a theoretical basis for the development of new drugs, aid doctors in conducting health risk assessments and making more cost-effective targeted prevention strategies conducted by artificial intelligence/machine learning, promote technological innovation, and provide more convenient treatment tailored to individualized patient profile, which will benefit the affected individuals and society at large.

          Graphical Abstract

          Highlights

          • Deeply addresses the concepts of personalized medicine and of proteoforms/proteoformics.

          • The importance of proteoformics in personalized medicine and betteer drug development.

          • Proteoformics benefits scientists to develop drugs and therapies in personalized medicine.

          In Brief

          This article in depth describes the concepts of personalized medicine and of proteoforms, why personalized medicine will benefit from proteomics on the level of proteoforms (proteoformics) and explain the importance of proteoformics for development of new and better drugs and diagnostics. It contains many important and helpful aspects of the requirement and application of proteoformics in personalized medicine, which is very important for scientists being involved in the development of drugs and therapies in personalized medicine.

          Related collections

          Most cited references163

          • Record: found
          • Abstract: found
          • Article: not found

          Global aetiology and epidemiology of type 2 diabetes mellitus and its complications

          Globally, the number of people with diabetes mellitus has quadrupled in the past three decades, and diabetes mellitus is the ninth major cause of death. About 1 in 11 adults worldwide now have diabetes mellitus, 90% of whom have type 2 diabetes mellitus (T2DM). Asia is a major area of the rapidly emerging T2DM global epidemic, with China and India the top two epicentres. Although genetic predisposition partly determines individual susceptibility to T2DM, an unhealthy diet and a sedentary lifestyle are important drivers of the current global epidemic; early developmental factors (such as intrauterine exposures) also have a role in susceptibility to T2DM later in life. Many cases of T2DM could be prevented with lifestyle changes, including maintaining a healthy body weight, consuming a healthy diet, staying physically active, not smoking and drinking alcohol in moderation. Most patients with T2DM have at least one complication, and cardiovascular complications are the leading cause of morbidity and mortality in these patients. This Review provides an updated view of the global epidemiology of T2DM, as well as dietary, lifestyle and other risk factors for T2DM and its complications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications

            Immunotherapy has revolutionized cancer treatment and rejuvenated the field of tumor immunology. Several types of immunotherapy, including adoptive cell transfer (ACT) and immune checkpoint inhibitors (ICIs), have obtained durable clinical responses, but their efficacies vary, and only subsets of cancer patients can benefit from them. Immune infiltrates in the tumor microenvironment (TME) have been shown to play a key role in tumor development and will affect the clinical outcomes of cancer patients. Comprehensive profiling of tumor-infiltrating immune cells would shed light on the mechanisms of cancer–immune evasion, thus providing opportunities for the development of novel therapeutic strategies. However, the highly heterogeneous and dynamic nature of the TME impedes the precise dissection of intratumoral immune cells. With recent advances in single-cell technologies such as single-cell RNA sequencing (scRNA-seq) and mass cytometry, systematic interrogation of the TME is feasible and will provide insights into the functional diversities of tumor-infiltrating immune cells. In this review, we outline the recent progress in cancer immunotherapy, particularly by focusing on landmark studies and the recent single-cell characterization of tumor-associated immune cells, and we summarize the phenotypic diversities of intratumoral immune cells and their connections with cancer immunotherapy. We believe such a review could strengthen our understanding of the progress in cancer immunotherapy, facilitate the elucidation of immune cell modulation in tumor progression, and thus guide the development of novel immunotherapies for cancer treatment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Delivery technologies for cancer immunotherapy

              Immunotherapy has become a powerful clinical strategy for treating cancer. The number of immunotherapy drug approvals has been increasing, with numerous treatments in clinical and preclinical development. However, a key challenge in the broad implementation of immunotherapies for cancer remains the controlled modulation of the immune system, as these therapeutics have serious adverse effects including autoimmunity and nonspecific inflammation. Understanding howto increase the response rates to various classes of immunotherapy is key to improving efficacy and controlling these adverse effects. Advanced biomaterials and drug delivery systems, such as nanoparticles and the use of T cells to deliver therapies, could effectively harness immunotherapies and improve their potency while reducing toxic side effects. Here, we discuss these research advances, as well as the opportunities and challenges for integrating delivery technologies into cancer immunotherapy, and we critically analyse the outlook for these emerging areas.
                Bookmark

                Author and article information

                Contributors
                Journal
                Mol Cell Proteomics
                Mol Cell Proteomics
                Molecular & Cellular Proteomics : MCP
                American Society for Biochemistry and Molecular Biology
                1535-9476
                1535-9484
                13 February 2024
                March 2024
                13 February 2024
                : 23
                : 3
                : 100737
                Affiliations
                [1]Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
                Author notes
                []For correspondence: Xianquan Zhan yjzhan2011@ 123456gmail.com
                Article
                S1535-9476(24)00027-6 100737
                10.1016/j.mcpro.2024.100737
                10950891
                38354979
                06b53c88-6ddf-4657-921a-54c3fbd1362a
                © 2024 The Authors

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 5 December 2023
                : 29 January 2024
                Categories
                Research Article Collection: Chemical Proteomics

                Molecular biology
                personalized drug therapy,personalized medicine,proteomics,proteoformics,proteoform,protein drugs,personalized protein drugs,therapeutic protein drug,health risk assessment,cost-effective targeted prevention,artificial intelligence,machine learning,individualized patient profile

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content187

                Cited by8

                Most referenced authors1,519