90
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Immunotherapy has revolutionized cancer treatment and rejuvenated the field of tumor immunology. Several types of immunotherapy, including adoptive cell transfer (ACT) and immune checkpoint inhibitors (ICIs), have obtained durable clinical responses, but their efficacies vary, and only subsets of cancer patients can benefit from them. Immune infiltrates in the tumor microenvironment (TME) have been shown to play a key role in tumor development and will affect the clinical outcomes of cancer patients. Comprehensive profiling of tumor-infiltrating immune cells would shed light on the mechanisms of cancer–immune evasion, thus providing opportunities for the development of novel therapeutic strategies. However, the highly heterogeneous and dynamic nature of the TME impedes the precise dissection of intratumoral immune cells. With recent advances in single-cell technologies such as single-cell RNA sequencing (scRNA-seq) and mass cytometry, systematic interrogation of the TME is feasible and will provide insights into the functional diversities of tumor-infiltrating immune cells. In this review, we outline the recent progress in cancer immunotherapy, particularly by focusing on landmark studies and the recent single-cell characterization of tumor-associated immune cells, and we summarize the phenotypic diversities of intratumoral immune cells and their connections with cancer immunotherapy. We believe such a review could strengthen our understanding of the progress in cancer immunotherapy, facilitate the elucidation of immune cell modulation in tumor progression, and thus guide the development of novel immunotherapies for cancer treatment.

          Related collections

          Most cited references104

          • Record: found
          • Abstract: found
          • Article: not found

          The blockade of immune checkpoints in cancer immunotherapy.

          Among the most promising approaches to activating therapeutic antitumour immunity is the blockade of immune checkpoints. Immune checkpoints refer to a plethora of inhibitory pathways hardwired into the immune system that are crucial for maintaining self-tolerance and modulating the duration and amplitude of physiological immune responses in peripheral tissues in order to minimize collateral tissue damage. It is now clear that tumours co-opt certain immune-checkpoint pathways as a major mechanism of immune resistance, particularly against T cells that are specific for tumour antigens. Because many of the immune checkpoints are initiated by ligand-receptor interactions, they can be readily blocked by antibodies or modulated by recombinant forms of ligands or receptors. Cytotoxic T-lymphocyte-associated antigen 4 (CTLA4) antibodies were the first of this class of immunotherapeutics to achieve US Food and Drug Administration (FDA) approval. Preliminary clinical findings with blockers of additional immune-checkpoint proteins, such as programmed cell death protein 1 (PD1), indicate broad and diverse opportunities to enhance antitumour immunity with the potential to produce durable clinical responses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade.

            PD-1 is a receptor of the Ig superfamily that negatively regulates T cell antigen receptor signaling by interacting with the specific ligands (PD-L) and is suggested to play a role in the maintenance of self-tolerance. In the present study, we examined possible roles of the PD-1/PD-L system in tumor immunity. Transgenic expression of PD-L1, one of the PD-L, in P815 tumor cells rendered them less susceptible to the specific T cell antigen receptor-mediated lysis by cytotoxic T cells in vitro, and markedly enhanced their tumorigenesis and invasiveness in vivo in the syngeneic hosts as compared with the parental tumor cells that lacked endogenous PD-L. Both effects could be reversed by anti-PD-L1 Ab. Survey of murine tumor lines revealed that all of the myeloma cell lines examined naturally expressed PD-L1. Growth of the myeloma cells in normal syngeneic mice was inhibited significantly albeit transiently by the administration of anti-PD-L1 Ab in vivo and was suppressed completely in the syngeneic PD-1-deficient mice. These results suggest that the expression of PD-L1 can serve as a potent mechanism for potentially immunogenic tumors to escape from host immune responses and that blockade of interaction between PD-1 and PD-L may provide a promising strategy for specific tumor immunotherapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Development of monocytes, macrophages, and dendritic cells.

              Monocytes and macrophages are critical effectors and regulators of inflammation and the innate immune response, the immediate arm of the immune system. Dendritic cells initiate and regulate the highly pathogen-specific adaptive immune responses and are central to the development of immunologic memory and tolerance. Recent in vivo experimental approaches in the mouse have unveiled new aspects of the developmental and lineage relationships among these cell populations. Despite this, the origin and differentiation cues for many tissue macrophages, monocytes, and dendritic cell subsets in mice, and the corresponding cell populations in humans, remain to be elucidated.
                Bookmark

                Author and article information

                Contributors
                zhangyuanyuanbio@pku.edu.cn
                zemin@pku.edu.cn
                Journal
                Cell Mol Immunol
                Cell. Mol. Immunol
                Cellular and Molecular Immunology
                Nature Publishing Group UK (London )
                1672-7681
                2042-0226
                1 July 2020
                1 July 2020
                August 2020
                : 17
                : 8
                : 807-821
                Affiliations
                [1 ]ISNI 0000 0001 2256 9319, GRID grid.11135.37, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, , Peking University, ; 100871 Beijing, China
                [2 ]ISNI 0000 0001 2256 9319, GRID grid.11135.37, BIOPIC and School of Life Sciences, , Peking University, ; 100871 Beijing, China
                Article
                488
                10.1038/s41423-020-0488-6
                7395159
                32612154
                93ed543a-b31e-46f1-ace6-555814d475d9
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 30 March 2020
                : 5 June 2020
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100001809, National Natural Science Foundation of China (National Science Foundation of China);
                Award ID: 31530036
                Award ID: 91742203
                Award Recipient :
                Categories
                Review Article
                Custom metadata
                © CSI and USTC 2020

                Immunology
                immunotherapy,tumor microenvironment,single-cell technologies,tumor-infiltrating immune cells,phenotypic diversities,cancer microenvironment,tumour immunology

                Comments

                Comment on this article