11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Raman Spectroscopy—A Novel Method for Identification and Characterization of Microbes on a Single-Cell Level in Clinical Settings

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rapid and accurate identification of pathogens causing infections is one of the biggest challenges in medicine. Timely identification of causative agents and their antimicrobial resistance profile can significantly improve the management of infection, lower costs for healthcare, mitigate ever-growing antimicrobial resistance and in many cases, save lives. Raman spectroscopy was shown to be a useful—quick, non-invasive, and non-destructive —tool for identifying microbes from solid and liquid media. Modifications of Raman spectroscopy and/or pretreatment of samples allow single-cell analyses and identification of microbes from various samples. It was shown that those non-culture-based approaches could also detect antimicrobial resistance. Moreover, recent studies suggest that a combination of Raman spectroscopy with optical tweezers has the potential to identify microbes directly from human body fluids. This review aims to summarize recent advances in non-culture-based approaches of identification of microbes and their virulence factors, including antimicrobial resistance, using methods based on Raman spectroscopy in the context of possible use in the future point-of-care diagnostic process.

          Related collections

          Most cited references146

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Revised Estimates for the Number of Human and Bacteria Cells in the Body

          Reported values in the literature on the number of cells in the body differ by orders of magnitude and are very seldom supported by any measurements or calculations. Here, we integrate the most up-to-date information on the number of human and bacterial cells in the body. We estimate the total number of bacteria in the 70 kg "reference man" to be 3.8·1013. For human cells, we identify the dominant role of the hematopoietic lineage to the total count (≈90%) and revise past estimates to 3.0·1013 human cells. Our analysis also updates the widely-cited 10:1 ratio, showing that the number of bacteria in the body is actually of the same order as the number of human cells, and their total mass is about 0.2 kg.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Studying disorder in graphite-based systems by Raman spectroscopy.

            Raman spectroscopy has historically played an important role in the structural characterization of graphitic materials, in particular providing valuable information about defects, stacking of the graphene layers and the finite sizes of the crystallites parallel and perpendicular to the hexagonal axis. Here we review the defect-induced Raman spectra of graphitic materials from both experimental and theoretical standpoints and we present recent Raman results on nanographites and graphenes. The disorder-induced D and D' Raman features, as well as the G'-band (the overtone of the D-band which is always observed in defect-free samples), are discussed in terms of the double-resonance (DR) Raman process, involving phonons within the interior of the 1st Brillouin zone of graphite and defects. In this review, experimental results for the D, D' and G' bands obtained with different laser lines, and in samples with different crystallite sizes and different types of defects are presented and discussed. We also present recent advances that made possible the development of Raman scattering as a tool for very accurate structural analysis of nano-graphite, with the establishment of an empirical formula for the in- and out-of-plane crystalline size and even fancier Raman-based information, such as for the atomic structure at graphite edges, and the identification of single versus multi-graphene layers. Once established, this knowledge provides a powerful machinery to understand newer forms of sp(2) carbon materials, such as the recently developed pitch-based graphitic foams. Results for the calculated Raman intensity of the disorder-induced D-band in graphitic materials as a function of both the excitation laser energy (E(laser)) and the in-plane size (L(a)) of nano-graphites are presented and compared with experimental results. The status of this research area is assessed, and opportunities for future work are identified.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis

              Currently microorganisms are best identified using 16S rRNA and 18S rRNA gene sequencing. However, in recent years matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has emerged as a potential tool for microbial identification and diagnosis. During the MALDI-TOF MS process, microbes are identified using either intact cells or cell extracts. The process is rapid, sensitive, and economical in terms of both labor and costs involved. The technology has been readily imbibed by microbiologists who have reported usage of MALDI-TOF MS for a number of purposes like, microbial identification and strain typing, epidemiological studies, detection of biological warfare agents, detection of water- and food-borne pathogens, detection of antibiotic resistance and detection of blood and urinary tract pathogens etc. The limitation of the technology is that identification of new isolates is possible only if the spectral database contains peptide mass fingerprints of the type strains of specific genera/species/subspecies/strains. This review provides an overview of the status and recent applications of mass spectrometry for microbial identification. It also explores the usefulness of this exciting new technology for diagnosis of diseases caused by bacteria, viruses, and fungi.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Infect Microbiol
                Front Cell Infect Microbiol
                Front. Cell. Infect. Microbiol.
                Frontiers in Cellular and Infection Microbiology
                Frontiers Media S.A.
                2235-2988
                22 April 2022
                2022
                : 12
                : 866463
                Affiliations
                [1] 1 Department of Microbiology, Faculty of Medicine of Masaryk University and St. Anne’s University Hospital , Brno, Czechia
                [2] 2 Institute of Scientific Instruments of the Czech Academy of Sciences , Brno, Czechia
                Author notes

                Edited by: Nicasio Mancini, Vita-Salute San Raffaele University, Italy

                Reviewed by: Anna Chiara De Luca, National Research Council (CNR), Italy; Jaroslav Hrabak, Charles University, Czechia

                *Correspondence: Veronika Hola, veronika.hola@ 123456fnusa.cz

                This article was submitted to Clinical Microbiology, a section of the journal Frontiers in Cellular and Infection Microbiology

                Article
                10.3389/fcimb.2022.866463
                9072635
                35531343
                05f958fe-d51d-46da-905e-dbe30546f49b
                Copyright © 2022 Rebrosova, Samek, Kizovsky, Bernatova, Hola and Ruzicka

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 31 January 2022
                : 07 March 2022
                Page count
                Figures: 1, Tables: 1, Equations: 0, References: 146, Pages: 10, Words: 3904
                Funding
                Funded by: Masarykova Univerzita , doi 10.13039/501100010653;
                Funded by: Agentura Pro Zdravotnický Výzkum České Republiky , doi 10.13039/501100009553;
                Categories
                Cellular and Infection Microbiology
                Mini Review

                Infectious disease & Microbiology
                raman spectroscopy,raman tweezers,identification of microorganisms,antimicrobial resistance,microfluidic devices,magnetic beads,diagnostics

                Comments

                Comment on this article