42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An independent evaluation in a CRC patient cohort of microbiome 16S rRNA sequence analysis methods: OTU clustering, DADA2, and Deblur

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          16S rRNA is the universal gene of microbes, and it is often used as a target gene to obtain profiles of microbial communities via next-generation sequencing (NGS) technology. Traditionally, sequences are clustered into operational taxonomic units (OTUs) at a 97% threshold based on the taxonomic standard using 16S rRNA, and methods for the reduction of sequencing errors are bypassed, which may lead to false classification units. Several denoising algorithms have been published to solve this problem, such as DADA2 and Deblur, which can correct sequencing errors at single-nucleotide resolution by generating amplicon sequence variants (ASVs). As high-resolution ASVs are becoming more popular than OTUs and only one analysis method is usually selected in a particular study, there is a need for a thorough comparison of OTU clustering and denoising pipelines. In this study, three of the most widely used 16S rRNA methods (two denoising algorithms, DADA2 and Deblur, along with de novo OTU clustering) were thoroughly compared using 16S rRNA amplification sequencing data generated from 358 clinical stool samples from the Colorectal Cancer (CRC) Screening Cohort. Our findings indicated that all approaches led to similar taxonomic profiles (with P > 0.05 in PERMNAOVA and P <0.001 in the Mantel test), although the number of ASVs/OTUs and the alpha-diversity indices varied considerably. Despite considerable differences in disease-related markers identified, disease-related analysis showed that all methods could result in similar conclusions. Fusobacterium, Streptococcus, Peptostreptococcus, Parvimonas, Gemella, and Haemophilus were identified by all three methods as enriched in the CRC group, while Roseburia, Faecalibacterium, Butyricicoccus, and Blautia were identified by all three methods as enriched in the healthy group. In addition, disease-diagnostic models generated using machine learning algorithms based on the data from these different methods all achieved good diagnostic efficiency (AUC: 0.87–0.89), with the model based on DADA2 producing the highest AUC (0.8944 and 0.8907 in the training set and test set, respectively). However, there was no significant difference in performance between the models ( P >0.05). In conclusion, this study demonstrates that DADA2, Deblur, and de novo OTU clustering display similar power levels in taxa assignment and can produce similar conclusions in the case of the CRC cohort.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found

          DADA2: High resolution sample inference from Illumina amplicon data

          We present DADA2, a software package that models and corrects Illumina-sequenced amplicon errors. DADA2 infers sample sequences exactly, without coarse-graining into OTUs, and resolves differences of as little as one nucleotide. In several mock communities DADA2 identified more real variants and output fewer spurious sequences than other methods. We applied DADA2 to vaginal samples from a cohort of pregnant women, revealing a diversity of previously undetected Lactobacillus crispatus variants.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Metagenomic biomarker discovery and explanation

            This study describes and validates a new method for metagenomic biomarker discovery by way of class comparison, tests of biological consistency and effect size estimation. This addresses the challenge of finding organisms, genes, or pathways that consistently explain the differences between two or more microbial communities, which is a central problem to the study of metagenomics. We extensively validate our method on several microbiomes and a convenient online interface for the method is provided at http://huttenhower.sph.harvard.edu/lefse/.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              UPARSE: highly accurate OTU sequences from microbial amplicon reads.

              Amplified marker-gene sequences can be used to understand microbial community structure, but they suffer from a high level of sequencing and amplification artifacts. The UPARSE pipeline reports operational taxonomic unit (OTU) sequences with ≤1% incorrect bases in artificial microbial community tests, compared with >3% incorrect bases commonly reported by other methods. The improved accuracy results in far fewer OTUs, consistently closer to the expected number of species in a community.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                25 July 2023
                2023
                : 14
                : 1178744
                Affiliations
                [1] 1School of Electronic and Information Engineering, Xi'an Jiaotong University , Xi'an, China
                [2] 2Guangdong Hongyuan Pukong Medical Technology Co., Ltd. , Guangzhou, China
                [3] 3School of Bioscience and Bioengineering, South China University of Technology , Guangzhou, China
                Author notes

                Edited by: Benoit St-Pierre, South Dakota State University, United States

                Reviewed by: Liqiang Li, National Clinical Research Center for Infectious Diseases, China; Xianzhi Lin, Chinese Academy of Sciences (CAS), China

                *Correspondence: Jiayin Wang wangjiayin@ 123456xjtu.edu.cn

                †These authors have contributed equally to this work

                Article
                10.3389/fmicb.2023.1178744
                10408458
                37560524
                057dcf7c-1ffb-4078-a872-23411a789dd4
                Copyright © 2023 Liu, Li, Zhu, Zhang and Wang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 03 March 2023
                : 14 June 2023
                Page count
                Figures: 4, Tables: 0, Equations: 0, References: 71, Pages: 11, Words: 8298
                Funding
                The work was supported by grants from the Natural Science Basic Research Program of Shaanxi (grant number 2020JC-01).
                Categories
                Microbiology
                Original Research
                Custom metadata
                Microorganisms in Vertebrate Digestive Systems

                Microbiology & Virology
                crc,gut microbiome,denoising algorithms,comparison,dada2,deblur,otu clustering
                Microbiology & Virology
                crc, gut microbiome, denoising algorithms, comparison, dada2, deblur, otu clustering

                Comments

                Comment on this article