18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      No evidence for inbreeding avoidance through postcopulatory mechanisms in the black field cricket, Teleogryllus commodus.

      Evolution; International Journal of Organic Evolution
      Animals, Australian Capital Territory, Female, Genetics, Population, Gryllidae, genetics, physiology, Inbreeding, Linear Models, Male, Reproduction, Selection, Genetic, Sexual Behavior, Animal

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Several studies suggest that females mate multiply so that they can preferentially fertilize eggs with the sperm of genetically more compatible males. Unrelated males are expected to be genetically more compatible with a female than her close relatives. We tested whether black field crickets, Teleogryllus commodus, can bias sperm usage toward unrelated males by comparing egg hatching success of females mated to two of their siblings (SS), two sibling males unrelated to the female (NN) or to one unrelated male and a sibling male (NS or SN). Egg hatching success was highly repeatable. Hatching success varied significantly among females of the three mating types (P = 0.011, n = 245 females). The estimated mean hatching success of 36.8% for SS females was significantly less that the 43.4% of NN females, indicating an effect of inbreeding on hatching success. If females preferentially use the sperm of a less closely related male, the hatching success of NS/SN females should be closer to 43.4% than 36.8%. It was, in fact, only 34.9%. This does not differ significantly from the value expected if the two males contributed an equal amount of sperm that was then used randomly. Although polyandry may confer indirect genetic benefits, our results provide no evidence that female T. commodus gain these benefits by biasing paternity toward genetically more compatible males through postcopulatory mechanisms.

          Related collections

          Author and article information

          Comments

          Comment on this article