7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification key genes, key miRNAs and key transcription factors of lung adenocarcinoma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Lung adenocarcinoma (LUAD) is one of the most common cancers worldwide. The etiology and pathophysiology of LUAD remain unclear. The aim of the present study was to identify the key genes, miRNAs and transcription factors (TFs) associated with the pathogenesis and prognosis of LUAD.

          Methods

          Three gene expression profiles (GSE43458, GSE32863, GSE74706) of LUAD were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified by GEO2R.The Gene Ontology (GO) terms, pathways, and protein-protein interactions (PPIs) of these DEGs were analyzed. Bases on DEGs, the miRNAs and TFs were predicted. Furthermore, TF-gene-miRNA co-expression network was constructed to identify key genes, miRNAs and TFs by bioinformatic methods. The expressions and prognostic values of key genes, miRNAs and TFs were carried out through The Cancer Genome Atlas (TCGA) database and Kaplan Meier-plotter (KM) online dataset.

          Results

          A total of 337 overlapped DEGs (75 upregulated and 262 downregulated) of LUAD were identified from the three GSE datasets. Moreover, 851 miRNAs and 29 TFs were identified to be associated with these DEGs. In total, 10 hub genes, 10 key miRNAs and 10 key TFs were located in the central hub of the TF-gene-miRNA co-expression network, and validated using The Cancer Genome Atlas (TCGA) database. Specifically, seven genes ( PHACTR2, MSRB3, GHR, PLSCR4, EPB41L2, NPNT, FBXO32), two miRNAs (hsa-let-7e-5p, hsa-miR-17-5p) and four TFs (STAT6, E2F1, ETS1, JUN) were identified to be associated with prognosis of LUAD, which have significantly different expressions between LUAD and normal lung tissue. Additionally, the miRNA/gene co-expression analysis also revealed that hsa-miR-17-5p and PLSCR4 have a significant negative co-expression relationship (r=−0.33, P=1.67e-14) in LUAD.

          Conclusions

          Our study constructed a regulatory network of TF-gene-miRNA in LUAD, which may provide new insights about the interaction between genes, miRNAs and TFs in the pathogenesis of LUAD, and identify potential biomarkers or therapeutic targets for LUAD.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Global cancer statistics, 2012.

          Cancer constitutes an enormous burden on society in more and less economically developed countries alike. The occurrence of cancer is increasing because of the growth and aging of the population, as well as an increasing prevalence of established risk factors such as smoking, overweight, physical inactivity, and changing reproductive patterns associated with urbanization and economic development. Based on GLOBOCAN estimates, about 14.1 million new cancer cases and 8.2 million deaths occurred in 2012 worldwide. Over the years, the burden has shifted to less developed countries, which currently account for about 57% of cases and 65% of cancer deaths worldwide. Lung cancer is the leading cause of cancer death among males in both more and less developed countries, and has surpassed breast cancer as the leading cause of cancer death among females in more developed countries; breast cancer remains the leading cause of cancer death among females in less developed countries. Other leading causes of cancer death in more developed countries include colorectal cancer among males and females and prostate cancer among males. In less developed countries, liver and stomach cancer among males and cervical cancer among females are also leading causes of cancer death. Although incidence rates for all cancers combined are nearly twice as high in more developed than in less developed countries in both males and females, mortality rates are only 8% to 15% higher in more developed countries. This disparity reflects regional differences in the mix of cancers, which is affected by risk factors and detection practices, and/or the availability of treatment. Risk factors associated with the leading causes of cancer death include tobacco use (lung, colorectal, stomach, and liver cancer), overweight/obesity and physical inactivity (breast and colorectal cancer), and infection (liver, stomach, and cervical cancer). A substantial portion of cancer cases and deaths could be prevented by broadly applying effective prevention measures, such as tobacco control, vaccination, and the use of early detection tests. © 2015 American Cancer Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses

            Abstract Tremendous amount of RNA sequencing data have been produced by large consortium projects such as TCGA and GTEx, creating new opportunities for data mining and deeper understanding of gene functions. While certain existing web servers are valuable and widely used, many expression analysis functions needed by experimental biologists are still not adequately addressed by these tools. We introduce GEPIA (Gene Expression Profiling Interactive Analysis), a web-based tool to deliver fast and customizable functionalities based on TCGA and GTEx data. GEPIA provides key interactive and customizable functions including differential expression analysis, profiling plotting, correlation analysis, patient survival analysis, similar gene detection and dimensionality reduction analysis. The comprehensive expression analyses with simple clicking through GEPIA greatly facilitate data mining in wide research areas, scientific discussion and the therapeutic discovery process. GEPIA fills in the gap between cancer genomics big data and the delivery of integrated information to end users, thus helping unleash the value of the current data resources. GEPIA is available at http://gepia.cancer-pku.cn/.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              STRING v10: protein–protein interaction networks, integrated over the tree of life

              The many functional partnerships and interactions that occur between proteins are at the core of cellular processing and their systematic characterization helps to provide context in molecular systems biology. However, known and predicted interactions are scattered over multiple resources, and the available data exhibit notable differences in terms of quality and completeness. The STRING database (http://string-db.org) aims to provide a critical assessment and integration of protein–protein interactions, including direct (physical) as well as indirect (functional) associations. The new version 10.0 of STRING covers more than 2000 organisms, which has necessitated novel, scalable algorithms for transferring interaction information between organisms. For this purpose, we have introduced hierarchical and self-consistent orthology annotations for all interacting proteins, grouping the proteins into families at various levels of phylogenetic resolution. Further improvements in version 10.0 include a completely redesigned prediction pipeline for inferring protein–protein associations from co-expression data, an API interface for the R computing environment and improved statistical analysis for enrichment tests in user-provided networks.
                Bookmark

                Author and article information

                Journal
                J Thorac Dis
                J Thorac Dis
                JTD
                Journal of Thoracic Disease
                AME Publishing Company
                2072-1439
                2077-6624
                May 2020
                May 2020
                : 12
                : 5
                : 1917-1933
                Affiliations
                [1]Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University , Nanjing 210029, China
                Author notes

                Contributions: (I) Conception and design: X Wang; (II) Administrative support: S Zhao; (III) Provision of study materials or patients: J Li; (IV) Collection and assembly of data: J Li; (V) Data analysis and interpretation: J Li; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

                Correspondence to: Xiaowei Wang, MD, PhD. Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, The Guangzhou Road Number 300, Nanjing 210029, China. Email: wangxiaowein1@ 123456163.com .
                Article
                jtd-12-05-1917
                10.21037/jtd-19-4168
                7330310
                32642095
                0565f261-e31d-4fd2-8569-589372f428be
                2020 Journal of Thoracic Disease. All rights reserved.

                Open Access Statement: This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the non-commercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license). See: https://creativecommons.org/licenses/by-nc-nd/4.0.

                History
                : 27 December 2019
                : 27 March 2020
                Categories
                Original Article

                lung adenocarcinoma (luad),tf-gene-mirna co-expression network,bioinformatical analysis,kaplan-meier analysis

                Comments

                Comment on this article