7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Customized In Situ Functionalization of Nanodiamonds with Nanoparticles for Composite Carbon-Paste Electrodes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The incorporation of nanomaterials on (bio)sensors based on composite materials has led to important advances in the analytical chemistry field due to the extraordinary properties that these materials offer. Nanodiamonds (NDs) are a novel type of material that has raised much attention, as they have the possibility of being produced on a large scale by relatively inexpensive synthetic methodologies. Moreover, NDs can present some other interesting features, such as fluorescence, due to surface functionalization and proved biocompatibility, which makes them suitable for biomedical applications. In addition, NDs can be customized with metallic nanoparticles (NPs), such as silver or gold, in order to combine the features of both. Raw NDs were used as modifiers of sensors due to the electrocatalytic effect of the sp 2 and oxygenated species present on their surface. The aim of this research work is evaluating the applicability of NDs modified with silver (Ag@NDs) and gold (Au@NDs) nanoparticles for the development of a suitable (bio)sensing platform. A complete morphological and electrochemical characterization as a function of the prepared nanocomposite composition was performed in order to improve the electroanalytical properties of the developed (bio)sensors. In the present work, the optimal composition for Au@NDs present on the nanocomposite matrix is 3.5% and the one for Ag@NDs is 1%. Good results were obtained in the evaluation of the optimal composition towards hydrogen peroxide and glucose as a model analyte using a (bio)sensor based on graphite-epoxy-Ag@NDs (17:82:1).

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          The properties and applications of nanodiamonds.

          Nanodiamonds have excellent mechanical and optical properties, high surface areas and tunable surface structures. They are also non-toxic, which makes them well suited to biomedical applications. Here we review the synthesis, structure, properties, surface chemistry and phase transformations of individual nanodiamonds and clusters of nanodiamonds. In particular we discuss the rational control of the mechanical, chemical, electronic and optical properties of nanodiamonds through surface doping, interior doping and the introduction of functional groups. These little gems have a wide range of potential applications in tribology, drug delivery, bioimaging and tissue engineering, and also as protein mimics and a filler material for nanocomposites.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Turnover numbers, turnover frequencies, and overpotential in molecular catalysis of electrochemical reactions. Cyclic voltammetry and preparative-scale electrolysis.

            The search for efficient catalysts to face modern energy challenges requires evaluation and comparison through reliable methods. Catalytic current efficiencies may be the combination of many factors besides the intrinsic chemical properties of the catalyst. Defining turnover number and turnover frequency (TOF) as reflecting these intrinsic chemical properties, it is shown that catalysts are not characterized by their TOF and their overpotential (η) as separate parameters but rather that the parameters are linked together by a definite relationship. The log TOF-η relationship can often be linearized, giving rise to a Tafel law, which allows the characterization of the catalyst by the value of the TOF at zero overpotential (TOF(0)). Foot-of-the-wave analysis of the cyclic voltammetric catalytic responses allows the determination of the TOF, log TOF-η relationship, and TOF(0), regardless of the side-phenomena that interfere at high current densities, preventing the expected catalytic current plateau from being reached. Strategies for optimized preparative-scale electrolyses may then be devised on these bases. The validity of this methodology is established on theoretical grounds and checked experimentally with examples taken from the catalytic reduction of CO(2) by iron(0) porphyrins.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nanomaterial-based electrochemical biosensors.

              The unique properties of nanoscale materials offer excellent prospects for interfacing biological recognition events with electronic signal transduction and for designing a new generation of bioelectronic devices exhibiting novel functions. In this Highlight I address recent research that has led to powerful nanomaterial-based electrical biosensing devices and examine future prospects and challenges. New nanoparticle-based signal amplification and coding strategies for bioaffinity assays are discussed, along with carbon-nanotube molecular wires for achieving efficient electrical communication with redox enzyme and nanowire-based label-free DNA sensors.
                Bookmark

                Author and article information

                Journal
                Nanomaterials (Basel)
                Nanomaterials (Basel)
                nanomaterials
                Nanomaterials
                MDPI
                2079-4991
                17 June 2020
                June 2020
                : 10
                : 6
                : 1179
                Affiliations
                [1 ]GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Carrer de les Sitges, 08193 Bellaterra (Cerdanyola del Vallès), Spain; raquel.montes@ 123456uab.cat
                [2 ]GENOCOV Research Group, Department of Chemistry, Faculty of Science, Edifici C-Nord, Universitat Autònoma de Barcelona, Carrer dels Til·lers, 08193 Bellaterra (Cerdanyola del Vallès), Spain; gerarg_93@ 123456hotmail.com
                [3 ]Grup de Tècniques de Separació en Química, Department of Chemistry, Facultat de Ciències, Universitat Autònoma de Barcelona, Carrer dels Til·lers, 08193 Bellaterra (Cerdanyola del Vallès), Spain; zhaojingjing186@ 123456sina.com (J.Z.); cristina.palet@ 123456uab.cat (C.P.)
                [4 ]Physical Chemistry TU Dresden, Zellescher Weg 19, 01069 Dresden, Germany
                Author notes
                Author information
                https://orcid.org/0000-0002-7467-613X
                https://orcid.org/0000-0002-8939-6253
                Article
                nanomaterials-10-01179
                10.3390/nano10061179
                7353388
                32560355
                05317100-bcd6-4a5c-8fb0-8886af0b1315
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 22 May 2020
                : 15 June 2020
                Categories
                Article

                carbon nanostructures,nanodiamonds,graphite,optimal composition,metal nanoparticles,electrochemical (bio)sensor,surface functionalization

                Comments

                Comment on this article