2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Polyphenols profile of pomegranate leaves and their role in green synthesis of silver nanoparticles

      research-article
      ,
      Scientific Reports
      Nature Publishing Group UK
      Nanoparticles, Secondary metabolism

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The current study reports on polyphenols profile of pomegranate leaves (PL) Punica granatum grown in Egypt and exhibiting their role in development of an eco-friendly method of green synthesis of silver nanoparticles (AgNPs). PL aqueous alcohol extract was fractionated, the major phenolic compound was isolated from the polyphenols rich fraction (ethyl acetate fraction) and identified by conventional and spectroscopic methods of analysis as ellagic acid. Furthermore, the fraction was standardized and analysed using UPLC-PDA-UV and LC–MS-MS techniques revealing tentative identification of 23 polyphenolic compounds, quantifying ellagic acid as 43.14 ± 0.57 μg/mg of the fraction. AgNPs were successfully synthesized with the aid of polyphenols rich fraction. This is the first report revealing the systematic optimization of the green synthesis process using various independent variables. AgNPs were characterized by adopting UV–Vis spectroscopy, FTIR, XRD, and SEM, which revealed strong SPR band within average of λ max 425 nm and polygonal shaped nanoparticles of 26.22 nm size, respectively. The antimicrobial efficacies of AgNPs and polyphenols rich fraction were tested against Gram-positive bacteria ( Bacillus subtilis, Staphylococcus aureus, and Sarcina lutea), Gram-negative bacteria ( Salmonella paratyphi, Escherichia coli, and Pseudomonas aeruginosa) and fungi ( Candida albicans). AgNPs showed a concentration-dependent activity against all the tested microorganisms.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Silver nanoparticles as an effective disinfectant: A review

          The paradigm modifications in the metallic crystals from bulky to micro-size to nano-scale have resulted in excellent and amazing properties; which have been the remarkable interests in a wider range of applications. Particularly, Ag NPs have much attention owing to their distinctive optical, chemical, electrical and catalytic properties that can be tuned with surface nature, size, shapes, etc. and hence these crystals have been used in various fields such as catalysis, sensor, electronic components, antimicrobial agents in the health industry etc. Among them, Ag NPs based disinfectants have paid attention due to the practical applications in our daily life. Therefore the Ag NPs have been used in different sectors such as silver-based air/water filters, textile, animal husbandry, biomedical and food packaging etc. In this review, the Ag NPs as a disinfectant in different sectors have been included in detail.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification and quantification of phenolic compounds from pomegranate (Punica granatum L.) peel, mesocarp, aril and differently produced juices by HPLC-DAD-ESI/MS(n).

            Phenolic compounds were extracted from pomegranate (Punica granatum L.) peel, mesocarp and arils. Extracts and juices were characterised by HPLC-DAD-ESI/MS(n). In total, 48 compounds were detected, among which 9 anthocyanins, 2 gallotannins, 22 ellagitannins, 2 gallagyl esters, 4 hydroxybenzoic acids, 7 hydroxycinnamic acids and 1 dihydroflavonol were identified based on their UV spectra and fragmentation patterns in collision-induced dissociation experiments. To the best of our knowledge, cyanidin-pentoside-hexoside, valoneic acid bilactone, brevifolin carboxylic acid, vanillic acid 4-glucoside and dihydrokaempferol-hexoside are reported for the first time in pomegranate fruits. Furthermore, punicalagin and pedunculagin I were isolated by preparative HPLC and used for quantification purposes. The ellagitannins were found to be the predominant phenolics in all samples investigated, among them punicalagin ranging from 11 to 20g per kilogram dry matter of mesocarp and peel as well as 4-565mg/L in the juices. The isolated compounds, extracts and juices were also assessed by the TEAC, FRAP and Folin-Ciocalteu assays revealing high correlation (R(2)=0.9995) of the TEAC and FRAP values, but also with total phenolic contents as determined by the Folin-Ciocalteu assay and by HPLC. Selection of raw materials, i.e. co-extraction of arils and peel, and pressure, respectively, markedly affected the profiles and contents of phenolics in the pomegranate juices, underlining the necessity to optimise these parameters for obtaining products with well-defined functional properties. Copyright © 2011 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Secondary Metabolites in the Green Synthesis of Metallic Nanoparticles

              The ability of organisms and organic compounds to reduce metal ions and stabilize them into nanoparticles (NPs) forms the basis of green synthesis. To date, synthesis of NPs from various metal ions using a diverse array of plant extracts has been reported. However, a clear understanding of the mechanism of green synthesis of NPs is lacking. Although most studies have neglected to analyze the green-synthesized NPs (GNPs) for the presence of compounds derived from the extract, several studies have demonstrated the conjugation of sugars, secondary metabolites, and proteins in these biogenic NPs. Despite several reports on the bioactivities (antimicrobial, antioxidant, cytotoxic, catalytic, etc.) of GNPs, only a handful of studies have compared these activities with their chemically synthesized counterparts. These comparisons have demonstrated that GNPs possess better bioactivities than NPs synthesized by other methods, which might be attributed to the presence of plant-derived compounds in these NPs. The ability of NPs to bind with organic compounds to form a stable complex has huge potential in the harvesting of precious molecules and for drug discovery, if harnessed meticulously. A thorough understanding of the mechanisms of green synthesis and high-throughput screening of stabilizing/capping agents on the physico-chemical properties of GNPs is warranted to realize the full potential of green nanotechnology.
                Bookmark

                Author and article information

                Contributors
                noha.swilam@bue.edu.eg
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                9 September 2020
                9 September 2020
                2020
                : 10
                : 14851
                Affiliations
                GRID grid.440862.c, ISNI 0000 0004 0377 5514, Department of Pharmacognosy, Faculty of Pharmacy, , The British University in Egypt, El Sherouk City, ; Suez Desert Road, P.O. Box 43, Cairo, 11837 Egypt
                Article
                71847
                10.1038/s41598-020-71847-5
                7481211
                32908245
                0520809a-05d0-49fb-b4c7-831dd77c421e
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 22 June 2020
                : 19 August 2020
                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Uncategorized
                nanoparticles,secondary metabolism
                Uncategorized
                nanoparticles, secondary metabolism

                Comments

                Comment on this article