11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Unsupervised Hebbian learning experimentally realized with analogue memristive crossbar arrays

      research-article
      , , ,
      Scientific Reports
      Nature Publishing Group UK

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Conventional transistor electronics are reaching their limits in terms of scalability, power dissipation, and the underlying Boolean system architecture. To overcome this obstacle neuromorphic analogue systems are recently highly investigated. Particularly, the use of memristive devices in VLSI analogue concepts provides a promising pathway to realize novel bio-inspired computing architectures, which are able to unravel the foreseen difficulties of traditional electronics. Currently, a variety of materials and device structures are being studied along with novel computing schemes to make use of the attractive features of memristive devices for neuromorphic computing. However, a number of obstacles still have to be overcome to cast memristive devices into hardware systems. Most important is a physical implementation of memristive devices, which can cope with the high complexity of neural networks. This includes the integration of analogue and electroforming-free memristive devices into crossbar structures with no additional electronic components, such as selector devices. Here, an unsupervised, bio-motivated Hebbian based learning platform for visual pattern recognition is presented. The heart of the system is a crossbar array (16 × 16) which consists of selector-free and forming-free (non-filamentary) memristive devices, which exhibit analogue I-V characteristics.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Nanoscale memristor device as synapse in neuromorphic systems.

          A memristor is a two-terminal electronic device whose conductance can be precisely modulated by charge or flux through it. Here we experimentally demonstrate a nanoscale silicon-based memristor device and show that a hybrid system composed of complementary metal-oxide semiconductor neurons and memristor synapses can support important synaptic functions such as spike timing dependent plasticity. Using memristors as synapses in neuromorphic circuits can potentially offer both high connectivity and high density required for efficient computing.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Deep Learning in Neural Networks: An Overview

            (2014)
            In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning. This historical survey compactly summarises relevant work, much of it from the previous millennium. Shallow and deep learners are distinguished by the depth of their credit assignment paths, which are chains of possibly learnable, causal links between actions and effects. I review deep supervised learning (also recapitulating the history of backpropagation), unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Short-term plasticity and long-term potentiation mimicked in single inorganic synapses.

              Memory is believed to occur in the human brain as a result of two types of synaptic plasticity: short-term plasticity (STP) and long-term potentiation (LTP; refs 1-4). In neuromorphic engineering, emulation of known neural behaviour has proven to be difficult to implement in software because of the highly complex interconnected nature of thought processes. Here we report the discovery of a Ag(2)S inorganic synapse, which emulates the synaptic functions of both STP and LTP characteristics through the use of input pulse repetition time. The structure known as an atomic switch, operating at critical voltages, stores information as STP with a spontaneous decay of conductance level in response to intermittent input stimuli, whereas frequent stimulation results in a transition to LTP. The Ag(2)S inorganic synapse has interesting characteristics with analogies to an individual biological synapse, and achieves dynamic memorization in a single device without the need of external preprogramming. A psychological model related to the process of memorizing and forgetting is also demonstrated using the inorganic synapses. Our Ag(2)S element indicates a breakthrough in mimicking synaptic behaviour essential for the further creation of artificial neural systems that emulate characteristics of human memory.
                Bookmark

                Author and article information

                Contributors
                maz@tf.uni-kiel.de
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                11 June 2018
                11 June 2018
                2018
                : 8
                : 8914
                Affiliations
                ISNI 0000 0001 2153 9986, GRID grid.9764.c, Nanoelektronik, Technische Fakultät Kiel, , Christian-Albrechts-Universität Kiel, ; Kiel, 24143 Germany
                Article
                27033
                10.1038/s41598-018-27033-9
                5995917
                29892090
                04cfa2b9-6332-4258-b8ec-5611198317d9
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 26 February 2018
                : 22 May 2018
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article