4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Towards Generalizable and Robust Text-to-SQL Parsing

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Text-to-SQL parsing tackles the problem of mapping natural language questions to executable SQL queries. In practice, text-to-SQL parsers often encounter various challenging scenarios, requiring them to be generalizable and robust. While most existing work addresses a particular generalization or robustness challenge, we aim to study it in a more comprehensive manner. In specific, we believe that text-to-SQL parsers should be (1) generalizable at three levels of generalization, namely i.i.d., zero-shot, and compositional, and (2) robust against input perturbations. To enhance these capabilities of the parser, we propose a novel TKK framework consisting of Task decomposition, Knowledge acquisition, and Knowledge composition to learn text-to-SQL parsing in stages. By dividing the learning process into multiple stages, our framework improves the parser's ability to acquire general SQL knowledge instead of capturing spurious patterns, making it more generalizable and robust. Experimental results under various generalization and robustness settings show that our framework is effective in all scenarios and achieves state-of-the-art performance on the Spider, SParC, and CoSQL datasets. Code can be found at https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/tkk.

          Related collections

          Author and article information

          Journal
          23 October 2022
          Article
          2210.12674
          04b623d0-b650-4239-9997-6ae075eaa74b

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          Findings of EMNLP 2022
          cs.CL

          Theoretical computer science
          Theoretical computer science

          Comments

          Comment on this article