4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multiple Functions of the Dmrt Genes in the Development of the Central Nervous System

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Dmrt genes encode the transcription factor containing the DM (doublesex and mab-3) domain, an intertwined zinc finger-like DNA binding module. While Dmrt genes are mainly involved in the sexual development of various species, recent studies have revealed that Dmrt genes, which belong to the DmrtA subfamily, are differentially expressed in the embryonic brain and spinal cord and are essential for the development of the central nervous system. Herein, we summarize recent studies that reveal the multiple functions of the Dmrt genes in various aspects of vertebrate neural development, including brain patterning, neurogenesis, and the specification of neurons.

          Related collections

          Most cited references117

          • Record: found
          • Abstract: not found
          • Article: not found

          The cell biology of neurogenesis.

          During the development of the mammalian central nervous system, neural stem cells and their derivative progenitor cells generate neurons by asymmetric and symmetric divisions. The proliferation versus differentiation of these cells and the type of division are closely linked to their epithelial characteristics, notably, their apical-basal polarity and cell-cycle length. Here, we discuss how these features change during development from neuroepithelial to radial glial cells, and how this transition affects cell fate and neurogenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Specification of cerebral cortical areas.

            P Rakic (1988)
            How the immense population of neurons that constitute the human cerebral neocortex is generated from progenitors lining the cerebral ventricle and then distributed to appropriate layers of distinctive cytoarchitectonic areas can be explained by the radial unit hypothesis. According to this hypothesis, the ependymal layer of the embryonic cerebral ventricle consists of proliferative units that provide a proto-map of prospective cytoarchitectonic areas. The output of the proliferative units is translated via glial guides to the expanding cortex in the form of ontogenetic columns, whose final number for each area can be modified through interaction with afferent input. Data obtained through various advanced neurobiological techniques, including electron microscopy, immunocytochemistry, [3H]thymidine and receptor autoradiography, retrovirus gene transfer, neural transplants, and surgical or genetic manipulation of cortical development, furnish new details about the kinetics of cell proliferation, their lineage relationships, and phenotypic expression that favor this hypothesis. The radial unit model provides a framework for understanding cerebral evolution, epigenetic regulation of the parcellation of cytoarchitectonic areas, and insight into the pathogenesis of certain cortical disorders in humans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A protein related to extracellular matrix proteins deleted in the mouse mutant reeler.

              The autosomal recessive mouse mutation reeler leads to impaired motor coordination, tremors and ataxia. Neurons in affected mice fail to reach their correct locations in the developing brain, disrupting the organization of the cerebellar and cerebral cortices and other laminated regions. Here we use a previously characterized reeler allele (rl(tg)) to close a gene, reelin, deleted in two reeler alleles. Normal but not mutant mice express reelin in embryonic and postnatal neurons during periods of neuronal migration. The encoded protein resembles extracellular matrix proteins involved in cell adhesion. The reeler phenotype thus seems to reflect a failure of early events associated with brain lamination which are normally controlled by reelin.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurosci
                Front Neurosci
                Front. Neurosci.
                Frontiers in Neuroscience
                Frontiers Media S.A.
                1662-4548
                1662-453X
                09 December 2021
                2021
                : 15
                : 789583
                Affiliations
                Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine , Sendai, Japan
                Author notes

                Edited by: Takuma Kumamoto, Tokyo Metropolitan Institute of Medical Science, Japan

                Reviewed by: Masakazu Namihira, National Institute of Advanced Industrial Science and Technology (AIST), Japan; Eric Joseph Bellefroid, Université Libre de Bruxelles, Belgium

                *Correspondence: Takako Kikkawa, kikkawa@ 123456med.tohoku.ac.jp

                This article was submitted to Neurodevelopment, a section of the journal Frontiers in Neuroscience

                Article
                10.3389/fnins.2021.789583
                8695973
                34955736
                04653ab6-7026-46b3-b90c-31218b68329b
                Copyright © 2021 Kikkawa and Osumi.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 05 October 2021
                : 22 November 2021
                Page count
                Figures: 2, Tables: 0, Equations: 0, References: 117, Pages: 10, Words: 9363
                Funding
                Funded by: Japan Society for the Promotion of Science, doi 10.13039/501100001691;
                Categories
                Neuroscience
                Review

                Neurosciences
                dmrta subfamily,patterning,neurogenesis,neuronal specification,corticogenesis
                Neurosciences
                dmrta subfamily, patterning, neurogenesis, neuronal specification, corticogenesis

                Comments

                Comment on this article