18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genome-Wide Identification, Phylogeny, and Expression Profile of the Dmrt (Doublesex and Mab-3 Related Transcription Factor) Gene Family in Channel Catfish ( Ictalurus punctatus)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Dmrt (Doublesex and Mab-3 related transcription factor) gene family is a class of crucial transcription factors characterized by a conserved DM domain related to sex determination and differentiation, which has been systematically described in various teleost fish, but less in channel catfish ( Ictalurus punctatus), an important global aquaculture species in the US and China. In this study, seven Dmrt genes from channel catfish genome were identified and analyzed using bioinformatics methods. Seven IpDmrt genes were distributed unevenly across five chromosomes. Synteny analysis revealed that Dmrt1, Dmrt2a, Dmrt2b, Dmrt3, Dmrt4, and Dmrt5 were relatively conserved in teleost fish. Tissue distribution analysis showed that IpDmrt1, IpDmrt2b, IpDmrt5, and IpDmrt6 exhibited sexually dimorphic expression patterns and, among them, IpDmrt1 and IpDmrt6 had high expression levels in the testes, while IpDmrt2b and IpDmrt5 had more significant expression levels in the ovaries than in other tissues. After 17β-estradiol treatment, IpDmrt2b and IpDmrt5 were significantly up regulated, while the expression of IpDmrt1 and IpDmrt6 was significantly repressed in XY channel catfish ovaries compared with XX channel catfish ovaries. The present study provides a comprehensive insight into the Dmrt gene family of channel catfish. The results suggest that IpDmrt1 and IpDmrt6 may play an important role in testis differentiation/development, while IpDmrt2b and IpDmrt5 are critical in ovary development in this species.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

          The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            The zebrafish reference genome sequence and its relationship to the human genome.

            Zebrafish have become a popular organism for the study of vertebrate gene function. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              DMY is a Y-specific DM-domain gene required for male development in the medaka fish.

              Although the sex-determining gene Sry has been identified in mammals, no comparable genes have been found in non-mammalian vertebrates. Here, we used recombinant breakpoint analysis to restrict the sex-determining region in medaka fish (Oryzias latipes) to a 530-kilobase (kb) stretch of the Y chromosome. Deletion analysis of the Y chromosome of a congenic XY female further shortened the region to 250 kb. Shotgun sequencing of this region predicted 27 genes. Three of these genes were expressed during sexual differentiation. However, only the DM-related PG17 was Y specific; we thus named it DMY. Two naturally occurring mutations establish DMY's critical role in male development. The first heritable mutant--a single insertion in exon 3 and the subsequent truncation of DMY--resulted in all XY female offspring. Similarly, the second XY mutant female showed reduced DMY expression with a high proportion of XY female offspring. During normal development, DMY is expressed only in somatic cells of XY gonads. These findings strongly suggest that the sex-specific DMY is required for testicular development and is a prime candidate for the medaka sex-determining gene.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Genet
                Front Genet
                Front. Genet.
                Frontiers in Genetics
                Frontiers Media S.A.
                1664-8021
                28 April 2022
                2022
                : 13
                : 891204
                Affiliations
                [1] 1 National Genetic Breeding Center of Channel Catfish , Freshwater Fisheries Research Institute of Jiangsu Province , Nanjing, China
                [2] 2 College of Marine Science and Fisheries , Jiangsu Ocean University , Lianyungang, China
                [3] 3 The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm , Nanjing, China
                Author notes

                Edited by: Hui Qiao, Chinese Academy of Fishery Sciences, China

                Reviewed by: Yao Zheng, Chinese Academy of Fishery Sciences, China

                Xiaoming Zhu, Institute of Hydrobiology (CAS), China

                *Correspondence: Shiyong Zhang, shiyongzhang@ 123456hotmail.com ; Xiaohui Chen, cxiaohui416@ 123456hotmail.com

                This article was submitted to Livestock Genomics, a section of the journal Frontiers in Genetics

                Article
                891204
                10.3389/fgene.2022.891204
                9095985
                35571040
                9ca58422-f0eb-4365-8683-f1afa3019547
                Copyright © 2022 Xu, Zhang, Zhang, Liu, Wang, Zhong, Bian and Chen.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 07 March 2022
                : 31 March 2022
                Categories
                Genetics
                Original Research

                Genetics
                dmrt gene family,sex reversal,channel catfish,sex determination,animal reproduction
                Genetics
                dmrt gene family, sex reversal, channel catfish, sex determination, animal reproduction

                Comments

                Comment on this article