Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Primordial aminoacyl-tRNA synthetases preferred minihelices to full-length tRNA

      research-article
      , , ,
      Nucleic Acids Research
      Oxford University Press

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aminoacyl-tRNA synthetases (AARS) and tRNAs translate the genetic code in all living cells. Little is known about how their molecular ancestors began to enforce the coding rules for the expression of their own genes. Schimmel et al. proposed in 1993 that AARS catalytic domains began by reading an ‘operational’ code in the acceptor stems of tRNA minihelices. We show here that the enzymology of an AARS urzyme•TΨC-minihelix cognate pair is a rich in vitro realization of that idea. The TΨC-minihelix Leu is a very poor substrate for full-length Leucyl-tRNA synthetase. It is a superior RNA substrate for the corresponding urzyme, LeuAC. LeuAC active-site mutations shift the choice of both amino acid and RNA substrates. AARS urzyme•minihelix cognate pairs are thus small, pliant models for the ancestral decoding hardware. They are thus an ideal platform for detailed experimental study of the operational RNA code.

          Graphical Abstract

          Graphical Abstract

          Related collections

          Most cited references100

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          tRNAdb 2009: compilation of tRNA sequences and tRNA genes

          One of the first specialized collections of nucleic acid sequences in life sciences was the ‘compilation of tRNA sequences and sequences of tRNA genes’ (http://www.trna.uni-bayreuth.de). Here, an updated and completely restructured version of this compilation is presented (http://trnadb.bioinf.uni-leipzig.de). The new database, tRNAdb, is hosted and maintained in cooperation between the universities of Leipzig, Marburg, and Strasbourg. Reimplemented as a relational database, tRNAdb will be updated periodically and is searchable in a highly flexible and user-friendly way. Currently, it contains more than 12 000 tRNA genes, classified into families according to amino acid specificity. Furthermore, the implementation of the NCBI taxonomy tree facilitates phylogeny-related queries. The database provides various services including graphical representations of tRNA secondary structures, a customizable output of aligned or un-aligned sequences with a variety of individual and combinable search criteria, as well as the construction of consensus sequences for any selected set of tRNAs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Universal rules and idiosyncratic features in tRNA identity.

            Correct expression of the genetic code at translation is directly correlated with tRNA identity. This survey describes the molecular signals in tRNAs that trigger specific aminoacylations. For most tRNAs, determinants are located at the two distal extremities: the anticodon loop and the amino acid accepting stem. In a few tRNAs, however, major identity signals are found in the core of the molecule. Identity elements have different strengths, often depend more on k cat effects than on K m effects and exhibit additive, cooperative or anti-cooperative interplay. Most determinants are in direct contact with cognate synthetases, and chemical groups on bases or ribose moieties that make functional interactions have been identified in several systems. Major determinants are conserved in evolution; however, the mechanisms by which they are expressed are species dependent. Recent studies show that alternate identity sets can be recognized by a single synthetase, and emphasize the importance of tRNA architecture and anti-determinants preventing false recognition. Identity rules apply to tRNA-like molecules and to minimalist tRNAs. Knowledge of these rules allows the manipulation of identity elements and engineering of tRNAs with switched, altered or multiple specificities.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs.

              The aminoacyl-transfer RNA synthetases (aaRS) catalyse the attachment of an amino acid to its cognate transfer RNA molecule in a highly specific two-step reaction. These proteins differ widely in size and oligomeric state, and have limited sequence homology. Out of the 18 known aaRS, only 9 referred to as class I synthetases (GlnRS, TyrRS, MetRS, GluRS, ArgRS, ValRS, IleRS, LeuRS, TrpRS), display two short common consensus sequences ('HIGH' and 'KMSKS') which indicate, as observed in three crystal structures, the presence of a structural domain (the Rossman fold) that binds ATP. We report here the sequence of Escherichia coli ProRS, a dimer of relative molecular mass 127,402, which is homologous to both ThrRS and SerRS. These three latter aaRS share three new sequence motifs with AspRS, AsnRS, LysRS, HisRS and the beta subunit of PheRS. These three motifs (motifs 1, 2 and 3), in a search through the entire data bank, proved to be specific for this set of aaRS (referred to as class II). Class II may also contain AlaRS and GlyRS, because these sequences have a typical motif 3. Surprisingly, this partition of aaRS in two classes is found to be strongly correlated on the functional level with the acylation occurring either on the 2' OH (class I) or 3' OH (class II) of the ribose of the last nucleotide of tRNA.
                Bookmark

                Author and article information

                Contributors
                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                08 July 2024
                23 May 2024
                23 May 2024
                : 52
                : 12
                : 7096-7111
                Affiliations
                Department of Biochemistry and Biophysics, University of North Carolina , Chapel Hill, NC 27599-7260, USA
                Department of Biochemistry and Biophysics, University of North Carolina , Chapel Hill, NC 27599-7260, USA
                Department of Physics, The University of Auckland , New Zealand
                Centre for Computational Evolution, University of Auckland , New Zealand
                Department of Computer Science, The University of Auckland , New Zealand
                Department of Biochemistry and Biophysics, University of North Carolina , Chapel Hill, NC 27599-7260, USA
                Author notes
                To whom correspondence should be addressed. Tel: +1 919 259 2558; Fax: +1 919 962 8326; Email: carter@ 123456med.unc.edu
                Author information
                https://orcid.org/0000-0003-0371-9961
                https://orcid.org/0000-0002-2653-4452
                Article
                gkae417
                10.1093/nar/gkae417
                11229368
                38783009
                04511b79-a5ec-4595-924f-7d83092f73d1
                © The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License ( https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@ 123456oup.com

                History
                : 10 May 2024
                : 30 April 2024
                : 27 February 2024
                Page count
                Pages: 16
                Funding
                Funded by: Alfred P. Sloan Foundation Matter-to-Life program;
                Award ID: G-2021-16944
                Categories
                AcademicSubjects/SCI00010
                Molecular Biology

                Genetics
                Genetics

                Comments

                Comment on this article