66
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cadmium Exposure and All-Cause and Cardiovascular Mortality in the U.S. General Population

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Urine cadmium concentrations were associated with all-cause and cardiovascular mortality in men in the 1988–1994 U.S. National Health and Nutrition Examination Survey (NHANES) population. Since 1988, cadmium exposure has decreased substantially in the United States. The associations between blood and urine cadmium and cardiovascular disease (CVD) mortality at more recent levels of exposure are unknown.

          Objectives: We evaluated the prospective association of blood and urine cadmium concentrations with all-cause and CVD mortality in the 1999–2004 U.S. population.

          Methods: We followed 8,989 participants who were ≥ 20 years of age for an average of 4.8 years. Hazard ratios for mortality end points comparing the 80th to the 20th percentiles of cadmium distributions were estimated using Cox regression.

          Results: The multivariable adjusted hazard ratios [95% confidence intervals (CIs)] for blood and urine cadmium were 1.50 (95% CI: 1.07, 2.10) and 1.52 (95% CI: 1.00, 2.29), respectively, for all-cause mortality, 1.69 (95% CI: 1.03, 2.77) and 1.74 (95% CI: 1.07, 2.83) for CVD mortality, 1.98 (95% CI: 1.11, 3.54) and 2.53 (95% CI: 1.54, 4.16) for heart disease mortality, and 1.73 (95% CI: 0.88, 3.40) and 2.09 (95% CI: 1.06, 4.13) for coronary heart disease mortality. The population attributable risks associated with the 80th percentile of the blood (0.80 μg/L) and urine (0.57 μg/g) cadmium distributions were 7.0 and 8.8%, respectively, for all-cause mortality and 7.5 and 9.2%, respectively, for CVD mortality

          Conclusions: We found strongly suggestive evidence that cadmium, at substantially low levels of exposure, remains an important determinant of all-cause and CVD mortality in a representative sample of U.S. adults. Efforts to further reduce cadmium exposure in the population could contribute to a substantial decrease in CVD disease burden.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: not found
          • Book: not found

          R: A Language and Environment for Statistical Computing.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Metals, toxicity and oxidative stress.

            Metal-induced toxicity and carcinogenicity, with an emphasis on the generation and role of reactive oxygen and nitrogen species, is reviewed. Metal-mediated formation of free radicals causes various modifications to DNA bases, enhanced lipid peroxidation, and altered calcium and sulfhydryl homeostasis. Lipid peroxides, formed by the attack of radicals on polyunsaturated fatty acid residues of phospholipids, can further react with redox metals finally producing mutagenic and carcinogenic malondialdehyde, 4-hydroxynonenal and other exocyclic DNA adducts (etheno and/or propano adducts). Whilst iron (Fe), copper (Cu), chromium (Cr), vanadium (V) and cobalt (Co) undergo redox-cycling reactions, for a second group of metals, mercury (Hg), cadmium (Cd) and nickel (Ni), the primary route for their toxicity is depletion of glutathione and bonding to sulfhydryl groups of proteins. Arsenic (As) is thought to bind directly to critical thiols, however, other mechanisms, involving formation of hydrogen peroxide under physiological conditions, have been proposed. The unifying factor in determining toxicity and carcinogenicity for all these metals is the generation of reactive oxygen and nitrogen species. Common mechanisms involving the Fenton reaction, generation of the superoxide radical and the hydroxyl radical appear to be involved for iron, copper, chromium, vanadium and cobalt primarily associated with mitochondria, microsomes and peroxisomes. However, a recent discovery that the upper limit of "free pools" of copper is far less than a single atom per cell casts serious doubt on the in vivo role of copper in Fenton-like generation of free radicals. Nitric oxide (NO) seems to be involved in arsenite-induced DNA damage and pyrimidine excision inhibition. Various studies have confirmed that metals activate signalling pathways and the carcinogenic effect of metals has been related to activation of mainly redox-sensitive transcription factors, involving NF-kappaB, AP-1 and p53. Antioxidants (both enzymatic and non-enzymatic) provide protection against deleterious metal-mediated free radical attacks. Vitamin E and melatonin can prevent the majority of metal-mediated (iron, copper, cadmium) damage both in vitro systems and in metal-loaded animals. Toxicity studies involving chromium have shown that the protective effect of vitamin E against lipid peroxidation may be associated rather with the level of non-enzymatic antioxidants than the activity of enzymatic antioxidants. However, a very recent epidemiological study has shown that a daily intake of vitamin E of more than 400 IU increases the risk of death and should be avoided. While previous studies have proposed a deleterious pro-oxidant effect of vitamin C (ascorbate) in the presence of iron (or copper), recent results have shown that even in the presence of redox-active iron (or copper) and hydrogen peroxide, ascorbate acts as an antioxidant that prevents lipid peroxidation and does not promote protein oxidation in humans in vitro. Experimental results have also shown a link between vanadium and oxidative stress in the etiology of diabetes. The impact of zinc (Zn) on the immune system, the ability of zinc to act as an antioxidant in order to reduce oxidative stress and the neuroprotective and neurodegenerative role of zinc (and copper) in the etiology of Alzheimer's disease is also discussed. This review summarizes recent findings in the metal-induced formation of free radicals and the role of oxidative stress in the carcinogenicity and toxicity of metals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nicotine chemistry, metabolism, kinetics and biomarkers.

              Nicotine underlies tobacco addiction, influences tobacco use patterns, and is used as a pharmacological aid to smoking cessation. The absorption, distribution and disposition characteristics of nicotine from tobacco and medicinal products are reviewed. Nicotine is metabolized primarily by the liver enzymes CYP2A6, UDPglucuronosyltransferase (UGT), and flavin-containing monooxygenase (FMO). In addition to genetic factors, nicotine metabolism is influenced by diet and meals, age, sex, use of estrogen-containing hormone preparations, pregnancy and kidney disease, other medications, and smoking itself. Substantial racial/ethnic differences are observed in nicotine metabolism, which are likely influenced by both genetic and environmental factors. The most widely used biomarker of nicotine intake is cotinine, which may be measured in blood, urine, saliva, hair, or nails. The current optimal plasma cotinine cut-point to distinguish smokers from non-smokers in the general US population is 3 ng ml(-1). This cut-point is much lower than that established 20 years ago, reflecting less secondhand smoke exposure due to clear air policies and more light or occasional smoking.
                Bookmark

                Author and article information

                Journal
                Environ Health Perspect
                Environ. Health Perspect
                EHP
                Environmental Health Perspectives
                National Institute of Environmental Health Sciences
                0091-6765
                1552-9924
                02 April 2012
                July 2012
                : 120
                : 7
                : 1017-1022
                Affiliations
                [1 ]Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
                [2 ]Department of Epidemiology, Atherothrombosis and Imaging, National Center for Cardiovascular Research (CNIC), Madrid, Spain
                [3 ]Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
                [4 ]Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
                [5 ]Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
                [6 ]National Center for Epidemiology, Instituto de Salud Carlos III, Madrid, Spain
                [7 ]CIBER en Epidemiología y Salud Publica (CIBERESP), Madrid, Spain
                [8 ]Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
                Author notes
                Address correspondence to M. Tellez-Plaza, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Room W7513-D, Baltimore, MD 21205 USA. Telephone: (410) 502-4267. Fax: (410) 955-1811. E-mail: mtellezp@ 123456jhsph.edu
                Article
                ehp.1104352
                10.1289/ehp.1104352
                3404657
                22472185
                039f8cf8-d6f3-43f3-80b6-cea95d30c2a6
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 17 August 2011
                : 02 April 2012
                Categories
                Research

                Public health
                cardiovascular disease,mortality,nhanes,survey,cadmium
                Public health
                cardiovascular disease, mortality, nhanes, survey, cadmium

                Comments

                Comment on this article