87
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Diagnosis and management of inhalation injury: an updated review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this article we review recent advances made in the pathophysiology, diagnosis, and treatment of inhalation injury. Historically, the diagnosis of inhalation injury has relied on nonspecific clinical exam findings and bronchoscopic evidence. The development of a grading system and the use of modalities such as chest computed tomography may allow for a more nuanced evaluation of inhalation injury and enhanced ability to prognosticate. Supportive respiratory care remains essential in managing inhalation injury. Adjuncts still lacking definitive evidence of efficacy include bronchodilators, mucolytic agents, inhaled anticoagulants, nonconventional ventilator modes, prone positioning, and extracorporeal membrane oxygenation. Recent research focusing on molecular mechanisms involved in inhalation injury has increased the number of potential therapies.

          Related collections

          Most cited references114

          • Record: found
          • Abstract: found
          • Article: not found

          Epinephrine inhibits tumor necrosis factor-alpha and potentiates interleukin 10 production during human endotoxemia.

          Short-term preexposure of mononuclear cells to epinephrine inhibits LPS-induced production of TNF, whereas preexposure for 24 h results in increased TNF production. To assess the effects of epinephrine infusions of varying duration on in vivo responses to LPS, the following experiments were performed: (a) Blood obtained from eight subjects at 4-24 h after the start of a 24-h infusion of epinephrine (30 ng/kg per min) produced less TNF after ex vivo stimulation with LPS compared with blood drawn before the start of the infusion, and (b) 17 healthy men who were receiving a continuous infusion of epinephrine (30 ng/kg per min) started either 3 h (EPI-3; n = 5) or 24 h (EPI-24; n = 6) were studied after intravenous injection of LPS (2 ng/kg, lot EC-5). EPI-3 inhibited LPS-induced in vivo TNF appearance and also increased IL-10 release (both P < 0.005 versus LPS), whereas EPI-24 only attenuated TNF secretion (P = 0.05). In separate in vitro experiments in whole blood, epinephrine increased LPS-induced IL-10 release by a combined effect on alpha and beta adrenergic receptors. Further, in LPS-stimulated blood, the increase on IL-10 levels caused by epinephrine only marginally contributed to concurrent inhibition of TNF production. Epinephrine, either endogenously produced or administered as a component of sepsis treatment, may have a net antiinflammatory effect on the cytokine network early in the course of systemic infection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Myocardial injury and long-term mortality following moderate to severe carbon monoxide poisoning.

            Carbon monoxide (CO) poisoning is a common cause of toxicological morbidity and mortality. Myocardial injury is a frequent consequence of moderate to severe CO poisoning. While the in-hospital mortality for these patients is low, the long-term outcome of myocardial injury in this setting is unknown. To determine the association between myocardial injury and long-term mortality in patients following moderate to severe CO poisoning. Prospective cohort study of 230 consecutive adult patients treated for moderate to severe CO poisoning with hyperbaric oxygen and admitted to the Hennepin County Medical Center, a regional center for treatment of CO poisoning, between January 1, 1994, and January 1, 2002. Follow-up was through November 11, 2005. All-cause mortality. Myocardial injury (cardiac troponin I level > or =0.7 ng/mL or creatine kinase-MB level > or =5.0 ng/mL and/or diagnostic electrocardiogram changes) occurred in 85 (37%) of 230 patients. At a median follow-up of 7.6 years (range: in-hospital only to 11.8 years), there were 54 deaths (24%). Twelve of those deaths (5%) occurred in the hospital as a result of a combination of burn injury and anoxic brain injury (n = 8) or cardiac arrest and anoxic brain injury (n = 4). Among the 85 patients who sustained myocardial injury from CO poisoning, 32 (38%) eventually died compared with 22 (15%) of 145 patients who did not sustain myocardial injury (adjusted hazard ratio, 2.1; 95% confidence interval, 1.2-3.7; P = .009). Myocardial injury occurs frequently in patients hospitalized for moderate to severe CO poisoning and is a significant predictor of mortality.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Inhalation injury: epidemiology, pathology, treatment strategies

              Lung injury resulting from inhalation of smoke or chemical products of combustion continues to be associated with significant morbidity and mortality. Combined with cutaneous burns, inhalation injury increases fluid resuscitation requirements, incidence of pulmonary complications and overall mortality of thermal injury. While many products and techniques have been developed to manage cutaneous thermal trauma, relatively few diagnosis-specific therapeutic options have been identified for patients with inhalation injury. Several factors explain slower progress for improvement in management of patients with inhalation injury. Inhalation injury is a more complex clinical problem. Burned cutaneous tissue may be excised and replaced with skin grafts. Injured pulmonary tissue must be protected from secondary injury due to resuscitation, mechanical ventilation and infection while host repair mechanisms receive appropriate support. Many of the consequences of smoke inhalation result from an inflammatory response involving mediators whose number and role remain incompletely understood despite improved tools for processing of clinical material. Improvements in mortality from inhalation injury are mostly due to widespread improvements in critical care rather than focused interventions for smoke inhalation. Morbidity associated with inhalation injury is produced by heat exposure and inhaled toxins. Management of toxin exposure in smoke inhalation remains controversial, particularly as related to carbon monoxide and cyanide. Hyperbaric oxygen treatment has been evaluated in multiple trials to manage neurologic sequelae of carbon monoxide exposure. Unfortunately, data to date do not support application of hyperbaric oxygen in this population outside the context of clinical trials. Cyanide is another toxin produced by combustion of natural or synthetic materials. A number of antidote strategies have been evaluated to address tissue hypoxia associated with cyanide exposure. Data from European centers supports application of specific antidotes for cyanide toxicity. Consistent international support for this therapy is lacking. Even diagnostic criteria are not consistently applied though bronchoscopy is one diagnostic and therapeutic tool. Medical strategies under investigation for specific treatment of smoke inhalation include beta-agonists, pulmonary blood flow modifiers, anticoagulants and antiinflammatory strategies. Until the value of these and other approaches is confirmed, however, the clinical approach to inhalation injury is supportive.
                Bookmark

                Author and article information

                Contributors
                michelle.f.buehner.mil@mail.mil
                Journal
                Crit Care
                Critical Care
                BioMed Central (London )
                1364-8535
                1466-609X
                28 October 2015
                28 October 2015
                2015
                : 19
                : 351
                Affiliations
                [ ]Department of Surgery, Walter Reed National Military Medical Center, 8901 Wisconsin Ave, Bethesda, MD 20889 USA
                [ ]Department of General Surgery, San Antonio Military Medical Center, 3551 Roger Brooke Dr., Fort Sam Houston, TX 78234 USA
                [ ]Department of Medicine, San Antonio Military Medical Center, 3551 Roger Brooke Dr., Fort Sam Houston, TX 78234 USA
                [ ]United States Army Institute of Surgical Research, Fort Sam Houston, TX 78234 USA
                [ ]Department of Surgery, Uniformed Services University of the Health Sciences, Building A, 4301 Jones Bridge Rd, Bethesda, MD 20814 USA
                Article
                1077
                10.1186/s13054-015-1077-4
                4624587
                26507130
                0339903a-a779-4021-acfc-268bfa45b14a
                © Walker et al. 2015

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                Categories
                Review
                Custom metadata
                © The Author(s) 2015

                Emergency medicine & Trauma
                Emergency medicine & Trauma

                Comments

                Comment on this article