29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Closing the Yield Gap for Cannabis: A Meta-Analysis of Factors Determining Cannabis Yield

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Until recently, the commercial production of Cannabis sativa was restricted to varieties that yielded high-quality fiber while producing low levels of the psychoactive cannabinoid tetrahydrocannabinol (THC). In the last few years, a number of jurisdictions have legalized the production of medical and/or recreational cannabis with higher levels of THC, and other jurisdictions seem poised to follow suit. Consequently, demand for industrial-scale production of high yield cannabis with consistent cannabinoid profiles is expected to increase. In this paper we highlight that currently, projected annual production of cannabis is based largely on facility size, not yield per square meter. This meta-analysis of cannabis yields reported in scientific literature aimed to identify the main factors contributing to cannabis yield per plant, per square meter, and per W of lighting electricity. In line with previous research we found that variety, plant density, light intensity and fertilization influence cannabis yield and cannabinoid content; we also identified pot size, light type and duration of the flowering period as predictors of yield and THC accumulation. We provide insight into the critical role of light intensity, quality, and photoperiod in determining cannabis yields, with particular focus on the potential for light-emitting diodes (LEDs) to improve growth and reduce energy requirements. We propose that the vast amount of genomics data currently available for cannabis can be used to better understand the effect of genotype on yield. Finally, we describe diversification that is likely to emerge in cannabis growing systems and examine the potential role of plant-growth promoting rhizobacteria (PGPR) for growth promotion, regulation of cannabinoid biosynthesis, and biocontrol.

          Related collections

          Most cited references96

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The draft genome and transcriptome of Cannabis sativa

          Background Cannabis sativa has been cultivated throughout human history as a source of fiber, oil and food, and for its medicinal and intoxicating properties. Selective breeding has produced cannabis plants for specific uses, including high-potency marijuana strains and hemp cultivars for fiber and seed production. The molecular biology underlying cannabinoid biosynthesis and other traits of interest is largely unexplored. Results We sequenced genomic DNA and RNA from the marijuana strain Purple Kush using shortread approaches. We report a draft haploid genome sequence of 534 Mb and a transcriptome of 30,000 genes. Comparison of the transcriptome of Purple Kush with that of the hemp cultivar 'Finola' revealed that many genes encoding proteins involved in cannabinoid and precursor pathways are more highly expressed in Purple Kush than in 'Finola'. The exclusive occurrence of Δ9-tetrahydrocannabinolic acid synthase in the Purple Kush transcriptome, and its replacement by cannabidiolic acid synthase in 'Finola', may explain why the psychoactive cannabinoid Δ9-tetrahydrocannabinol (THC) is produced in marijuana but not in hemp. Resequencing the hemp cultivars 'Finola' and 'USO-31' showed little difference in gene copy numbers of cannabinoid pathway enzymes. However, single nucleotide variant analysis uncovered a relatively high level of variation among four cannabis types, and supported a separation of marijuana and hemp. Conclusions The availability of the Cannabis sativa genome enables the study of a multifunctional plant that occupies a unique role in human culture. Its availability will aid the development of therapeutic marijuana strains with tailored cannabinoid profiles and provide a basis for the breeding of hemp with improved agronomic characteristics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cannabidiol (CBD) and its analogs: a review of their effects on inflammation.

            First isolated from Cannabis in 1940 by Roger Adams, the structure of CBD was not completely elucidated until 1963. Subsequent studies resulted in the pronouncement that THC was the 'active' principle of Cannabis and research then focused primarily on it to the virtual exclusion of CBD. This was no doubt due to the belief that activity meant psychoactivity that was shown by THC and not by CBD. In retrospect this must be seen as unfortunate since a number of actions of CBD with potential therapeutic benefit were downplayed for many years. In this review, attention will be focused on the effects of CBD in the broad area of inflammation where such benefits seem likely to be developed. Topics covered in this review are; the medicinal chemistry of CBD, CBD receptor binding involved in controlling Inflammation, signaling events generated by CBD, downstream events affected by CBD (gene expression and transcription), functional effects reported for CBD and combined THC plus CBD treatment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A chemotaxonomic analysis of cannabinoid variation in Cannabis (Cannabaceae).

              Cannabinoids are important chemotaxonomic markers unique to Cannabis. Previous studies show that a plant's dry-weight ratio of Δ(9)-tetrahydrocannabinol (THC) to cannabidiol (CBD) can be assigned to one of three chemotypes and that alleles B(D) and B(T) encode alloenzymes that catalyze the conversion of cannabigerol to CBD and THC, respectively. In the present study, the frequencies of B(D) and B(T) in sample populations of 157 Cannabis accessions were determined from CBD and THC banding patterns, visualized by starch gel electrophoresis. Gas chromatography was used to quantify cannabinoid levels in 96 of the same accessions. The data were interpreted with respect to previous analyses of genetic and morphological variation in the same germplasm collection. Two biotypes (infraspecific taxa of unassigned rank) of C. sativa and four biotypes of C. indica were recognized. Mean THC levels and the frequency of B(T) were significantly higher in C. indica than C. sativa. The proportion of high THC/CBD chemotype plants in most accessions assigned to C. sativa was 25%. Plants with relatively high levels of tetrahydrocannabivarin (THCV) and/or cannabidivarin (CBDV) were common only in C. indica. This study supports a two-species concept of Cannabis.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                24 April 2019
                2019
                : 10
                : 495
                Affiliations
                [1] 1Crop Physiology Laboratory, Department of Plant Science, McGill University , Sainte-Anne-de-Bellevue, QC, Canada
                [2] 2Plant Systems Biology Laboratory, Department of Plant Science, McGill University , Sainte-Anne-de-Bellevue, QC, Canada
                [3] 3Biomass Production Laboratory, Department of Bioresource Engineering, McGill University , Sainte-Anne-de-Bellevue, QC, Canada
                [4] 4Ravenquest Biomed, Inc. , Vancouver, BC, Canada
                Author notes

                Edited by: Luis A. N. Aguirrezabal, National University of Mar del Plata, Argentina

                Reviewed by: Debora Nercessian, CONICET Mar del Plata, Argentina; Robert VanBuren, Michigan State University, United States

                *Correspondence: Rachel Backer rachel.backer@ 123456mail.mcgill.ca

                This article was submitted to Crop and Product Physiology, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2019.00495
                6491815
                31068957
                033439a5-1816-402d-b89c-941d776f61d5
                Copyright © 2019 Backer, Schwinghamer, Rosenbaum, McCarty, Eichhorn Bilodeau, Lyu, Ahmed, Robinson, Lefsrud, Wilkins and Smith.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 31 October 2018
                : 01 April 2019
                Page count
                Figures: 7, Tables: 1, Equations: 4, References: 119, Pages: 15, Words: 12361
                Funding
                Funded by: Natural Sciences and Engineering Research Council of Canada 10.13039/501100000038
                Categories
                Plant Science
                Review

                Plant science & Botany
                cannabis,genomics,transcriptomics,chemotype,yield gap,light emitting diodes,pgpr,gwas
                Plant science & Botany
                cannabis, genomics, transcriptomics, chemotype, yield gap, light emitting diodes, pgpr, gwas

                Comments

                Comment on this article