194
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The draft genome and transcriptome of Cannabis sativa

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Cannabis sativa has been cultivated throughout human history as a source of fiber, oil and food, and for its medicinal and intoxicating properties. Selective breeding has produced cannabis plants for specific uses, including high-potency marijuana strains and hemp cultivars for fiber and seed production. The molecular biology underlying cannabinoid biosynthesis and other traits of interest is largely unexplored.

          Results

          We sequenced genomic DNA and RNA from the marijuana strain Purple Kush using shortread approaches. We report a draft haploid genome sequence of 534 Mb and a transcriptome of 30,000 genes. Comparison of the transcriptome of Purple Kush with that of the hemp cultivar 'Finola' revealed that many genes encoding proteins involved in cannabinoid and precursor pathways are more highly expressed in Purple Kush than in 'Finola'. The exclusive occurrence of Δ 9-tetrahydrocannabinolic acid synthase in the Purple Kush transcriptome, and its replacement by cannabidiolic acid synthase in 'Finola', may explain why the psychoactive cannabinoid Δ 9-tetrahydrocannabinol (THC) is produced in marijuana but not in hemp. Resequencing the hemp cultivars 'Finola' and 'USO-31' showed little difference in gene copy numbers of cannabinoid pathway enzymes. However, single nucleotide variant analysis uncovered a relatively high level of variation among four cannabis types, and supported a separation of marijuana and hemp.

          Conclusions

          The availability of the Cannabis sativa genome enables the study of a multifunctional plant that occupies a unique role in human culture. Its availability will aid the development of therapeutic marijuana strains with tailored cannabinoid profiles and provide a basis for the breeding of hemp with improved agronomic characteristics.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects.

          Tetrahydrocannabinol (THC) has been the primary focus of cannabis research since 1964, when Raphael Mechoulam isolated and synthesized it. More recently, the synergistic contributions of cannabidiol to cannabis pharmacology and analgesia have been scientifically demonstrated. Other phytocannabinoids, including tetrahydrocannabivarin, cannabigerol and cannabichromene, exert additional effects of therapeutic interest. Innovative conventional plant breeding has yielded cannabis chemotypes expressing high titres of each component for future study. This review will explore another echelon of phytotherapeutic agents, the cannabis terpenoids: limonene, myrcene, α-pinene, linalool, β-caryophyllene, caryophyllene oxide, nerolidol and phytol. Terpenoids share a precursor with phytocannabinoids, and are all flavour and fragrance components common to human diets that have been designated Generally Recognized as Safe by the US Food and Drug Administration and other regulatory agencies. Terpenoids are quite potent, and affect animal and even human behaviour when inhaled from ambient air at serum levels in the single digits ng·mL(-1) . They display unique therapeutic effects that may contribute meaningfully to the entourage effects of cannabis-based medicinal extracts. Particular focus will be placed on phytocannabinoid-terpenoid interactions that could produce synergy with respect to treatment of pain, inflammation, depression, anxiety, addiction, epilepsy, cancer, fungal and bacterial infections (including methicillin-resistant Staphylococcus aureus). Scientific evidence is presented for non-cannabinoid plant components as putative antidotes to intoxicating effects of THC that could increase its therapeutic index. Methods for investigating entourage effects in future experiments will be proposed. Phytocannabinoid-terpenoid synergy, if proven, increases the likelihood that an extensive pipeline of new therapeutic products is possible from this venerable plant. http://dx.doi.org/10.1111/bph.2011.163.issue-7. © 2011 The Author. British Journal of Pharmacology © 2011 The British Pharmacological Society.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Isolation, Structure, and Partial Synthesis of an Active Constituent of Hashish

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of protein coding regions by database similarity search.

              Sequence similarity between a translated nucleotide sequence and a known biological protein can provide strong evidence for the presence of a homologous coding region, even between distantly related genes. The computer program BLASTX performed conceptual translation of a nucleotide query sequence followed by a protein database search in one programmatic step. We characterized the sensitivity of BLASTX recognition to the presence of substitution, insertion and deletion errors in the query sequence and to sequence divergence. Reading frames were reliably identified in the presence of 1% query errors, a rate that is typical for primary sequence data. BLASTX is appropriate for use in moderate and large scale sequencing projects at the earliest opportunity, when the data are most prone to containing errors.
                Bookmark

                Author and article information

                Journal
                Genome Biol
                Genome Biol
                Genome Biology
                BioMed Central
                1465-6906
                1465-6914
                2011
                20 October 2011
                : 12
                : 10
                : R102
                Affiliations
                [1 ]Banting and Best Department of Medical Research and Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St. Room 230, Toronto, ON, M5S 3E1, Canada
                [2 ]Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2 Canada
                [3 ]National Research Council of Canada, Plant Biotechnology Institute, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
                [4 ]Department of Molecular Genetics, University of Toronto, #4396 Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8 Canada
                Article
                gb-2011-12-10-r102
                10.1186/gb-2011-12-10-r102
                3359589
                22014239
                2bcc5a67-ff85-40cf-ab21-ffb06e11bd63
                Copyright ©2011 van Bakel et al; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 20 October 2011
                Categories
                Research

                Genetics
                cannabinoid,cannabaceae,transcriptome,genome,cannabis,marijuana,hemp
                Genetics
                cannabinoid, cannabaceae, transcriptome, genome, cannabis, marijuana, hemp

                Comments

                Comment on this article