24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Integrating Global Citizen Science Platforms to Enable Next-Generation Surveillance of Invasive and Vector Mosquitoes

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mosquito-borne diseases continue to ravage humankind with >700 million infections and nearly one million deaths every year. Yet only a small percentage of the >3500 mosquito species transmit diseases, necessitating both extensive surveillance and precise identification. Unfortunately, such efforts are costly, time-consuming, and require entomological expertise. As envisioned by the Global Mosquito Alert Consortium, citizen science can provide a scalable solution. However, disparate data standards across existing platforms have thus far precluded truly global integration. Here, utilizing Open Geospatial Consortium standards, we harmonized four data streams from three established mobile apps—Mosquito Alert, iNaturalist, and GLOBE Observer’s Mosquito Habitat Mapper and Land Cover—to facilitate interoperability and utility for researchers, mosquito control personnel, and policymakers. We also launched coordinated media campaigns that generated unprecedented numbers and types of observations, including successfully capturing the first images of targeted invasive and vector species. Additionally, we leveraged pooled image data to develop a toolset of artificial intelligence algorithms for future deployment in taxonomic and anatomical identification. Ultimately, by harnessing the combined powers of citizen science and artificial intelligence, we establish a next-generation surveillance framework to serve as a united front to combat the ongoing threat of mosquito-borne diseases worldwide.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: not found
          • Conference Proceedings: not found

          Deep Residual Learning for Image Recognition

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The FAIR Guiding Principles for scientific data management and stewardship

            There is an urgent need to improve the infrastructure supporting the reuse of scholarly data. A diverse set of stakeholders—representing academia, industry, funding agencies, and scholarly publishers—have come together to design and jointly endorse a concise and measureable set of principles that we refer to as the FAIR Data Principles. The intent is that these may act as a guideline for those wishing to enhance the reusability of their data holdings. Distinct from peer initiatives that focus on the human scholar, the FAIR Principles put specific emphasis on enhancing the ability of machines to automatically find and use the data, in addition to supporting its reuse by individuals. This Comment is the first formal publication of the FAIR Principles, and includes the rationale behind them, and some exemplar implementations in the community.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Adam: A Method for Stochastic Optimization

              We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm. Published as a conference paper at the 3rd International Conference for Learning Representations, San Diego, 2015
                Bookmark

                Author and article information

                Contributors
                Journal
                Insects
                Insects
                MDPI AG
                2075-4450
                August 2022
                July 27 2022
                : 13
                : 8
                : 675
                Article
                10.3390/insects13080675
                36005301
                0314e466-0a98-44b3-bdd1-f78afcb73c37
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article