6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tumor mutation burden for predicting immune checkpoint blockade response: the more, the better

      research-article
      1 , 2 ,
      Journal for Immunotherapy of Cancer
      BMJ Publishing Group
      immunotherapy

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Recently, the US Food and Drug Administration (FDA) has approved immune checkpoint blockade (ICB) for treating cancer patients with tumor mutation burden (TMB) >10 mutations/megabase (mut/Mb). However, high TMB (TMB-H) defined by >10 mut/Mb fails to predict ICB response across different cancer types, which has raised serious concerns on the current FDA approval. Thus, to better implement TMB as a robust biomarker of ICB response, an optimal and generalizable TMB cut-off within and across cancer types must be addressed as soon as possible.

          Methods

          Using Morris’s and Kurzrock’s cohorts (n=1662 and 102), we exhaustively tested all possible TMB cut-offs for predicting ICB treatment outcomes in 10 cancer types. The bootstrap method was applied to generate 10,000 randomly resampled cohorts using original cohorts to measure the reproducibility of TMB cut-off. ICB treatment outcomes were analyzed by overall survival, progression-free survival and objective response rate.

          Results

          No universally valid TMB cut-off was available for all cancer types. Only in cancer types with higher TMB (category I), such as melanoma, colorectal cancer, bladder cancer, and non-small cell lung cancer, the associations between TMB-H and ICB treatment outcomes were less affected by TMB cut-off selection. Moreover, high TMB (category I) cancer types shared a wide range of TMB cut-offs and a universally optimal TMB cut-off of 13 mut/Mb for predicting favorable ICB outcomes. In contrast, low TMB (category II) cancer types, for which the prognostic associations were sensitive to TMB cut-off selection, showed markedly limited and distinct ranges of significantly favorable TMB cut-offs. Equivalent results were obtained in the analyses of pooled tumors.

          Conclusions

          Our finding—the correlation that TMB-H is more robustly associated with favorable ICB treatment outcomes in cancer types with higher TMBs—can be used to predict whether TMB could be a robust predictive biomarker in cancer types for which TMB data are available, but ICB treatment has not been investigated. This theory was tested in cancer of unknown primary successfully. Additionally, the universal TMB cut-off of 13 mut/Mb might reveal a general requirement to trigger the sequential cascade from somatic mutations to an effective antitumor immunity.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer Statistics, 2021

          Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths in the United States and compiles the most recent data on population-based cancer occurrence. Incidence data (through 2017) were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data (through 2018) were collected by the National Center for Health Statistics. In 2021, 1,898,160 new cancer cases and 608,570 cancer deaths are projected to occur in the United States. After increasing for most of the 20th century, the cancer death rate has fallen continuously from its peak in 1991 through 2018, for a total decline of 31%, because of reductions in smoking and improvements in early detection and treatment. This translates to 3.2 million fewer cancer deaths than would have occurred if peak rates had persisted. Long-term declines in mortality for the 4 leading cancers have halted for prostate cancer and slowed for breast and colorectal cancers, but accelerated for lung cancer, which accounted for almost one-half of the total mortality decline from 2014 to 2018. The pace of the annual decline in lung cancer mortality doubled from 3.1% during 2009 through 2013 to 5.5% during 2014 through 2018 in men, from 1.8% to 4.4% in women, and from 2.4% to 5% overall. This trend coincides with steady declines in incidence (2.2%-2.3%) but rapid gains in survival specifically for nonsmall cell lung cancer (NSCLC). For example, NSCLC 2-year relative survival increased from 34% for persons diagnosed during 2009 through 2010 to 42% during 2015 through 2016, including absolute increases of 5% to 6% for every stage of diagnosis; survival for small cell lung cancer remained at 14% to 15%. Improved treatment accelerated progress against lung cancer and drove a record drop in overall cancer mortality, despite slowing momentum for other common cancers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            PD-1 blockade induces responses by inhibiting adaptive immune resistance

            Therapies that target the programmed death-1 (PD-1) receptor have shown unprecedented rates of durable clinical responses in patients with various cancer types. 1–5 One mechanism by which cancer tissues limit the host immune response is via upregulation of PD-1 ligand (PD-L1) and its ligation to PD-1 on antigen-specific CD8 T-cells (termed adaptive immune resistance). 6,7 Here we show that pre-existing CD8 T-cells distinctly located at the invasive tumour margin are associated with expression of the PD-1/PD-L1 immune inhibitory axis and may predict response to therapy. We analyzed samples from 46 patients with metastatic melanoma obtained before and during anti-PD1 therapy (pembrolizumab) using quantitative immunohistochemistry, quantitative multiplex immunofluorescence, and next generation sequencing for T-cell receptors (TCR). In serially sampled tumours, responding patients showed proliferation of intratumoural CD8+ T-cells that directly correlated with radiographic reduction in tumour size. Pre-treatment samples obtained from responding patients showed higher numbers of CD8, PD1, and PD-L1 expressing cells at the invasive tumour margin and inside tumours, with close proximity between PD-1 and PD-L1, and a more clonal TCR repertoire. Using multivariate analysis, we established a predictive model based on CD8 expression at the invasive margin and validated the model in an independent cohort of 15 patients. Our findings indicate that tumour regression following therapeutic PD-1 blockade requires pre-existing CD8+ T cells that are negatively regulated by PD-1/PD-L1 mediated adaptive immune resistance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tumor mutational load predicts survival after immunotherapy across multiple cancer types

              Immune checkpoint inhibitor (ICI) treatments benefit some patients with metastatic cancers, but predictive biomarkers are needed. Findings in select cancer types suggest that tumor mutational burden (TMB) may predict clinical response to ICI.To examine this association more broadly, we analyzed the clinical and genomic data of 1662 advanced cancer patients treated with ICI, and 5371 non-ICI treated patients, whose tumors underwent targeted next-generation sequencing (MSK-IMPACT). Among all patients, higher somatic TMB (highest 20% in each histology) was associated with better OS (HR 0.52; p=1.6 ×10 −6 ). For most cancer histologies, an association between higher TMB and improved survival was observed. The TMB cutpoints associated with improved survival varied markedly between cancer types. These data indicate that TMB is associated with improved survival in patients receiving ICI across a wide variety of cancer types, but that there may not be one universal definition of high TMB.
                Bookmark

                Author and article information

                Journal
                J Immunother Cancer
                J Immunother Cancer
                jitc
                jitc
                Journal for Immunotherapy of Cancer
                BMJ Publishing Group (BMA House, Tavistock Square, London, WC1H 9JR )
                2051-1426
                2022
                31 January 2022
                : 10
                : 1
                : e003087
                Affiliations
                [1 ]departmentInstitute of Military Cognition and Brain Sciences , Academy of Military Medical Sciences , Beijing, China
                [2 ]Beijing Institute of Basic Medical Sciences , Beijing, China
                Author notes
                Author information
                http://orcid.org/0000-0002-3651-7701
                Article
                jitc-2021-003087
                10.1136/jitc-2021-003087
                8804687
                35101940
                02acad13-b34f-4648-902e-07afcf24c519
                © Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

                This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See http://creativecommons.org/licenses/by-nc/4.0/.

                History
                : 25 October 2021
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001809, National Natural Science Foundation of China;
                Award ID: 32100739
                Categories
                Immunotherapy Biomarkers
                1506
                2437
                Original research
                Custom metadata
                unlocked

                immunotherapy
                immunotherapy

                Comments

                Comment on this article