12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tumor-targeted interleukin-12 synergizes with entinostat to overcome PD-1/PD-L1 blockade-resistant tumors harboring MHC-I and APM deficiencies

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Immune checkpoint blockade (ICB) has achieved unprecedented success in treating multiple cancer types. However, clinical benefit remains modest for most patients with solid malignancies due to primary or acquired resistance. Tumor-intrinsic loss of major histocompatibility complex class I (MHC-I) and aberrations in antigen processing machinery (APM) and interferon gamma (IFN-γ) pathways have been shown to play an important role in ICB resistance. While a plethora of combination treatments are being investigated to overcome ICB resistance, there are few identified preclinical models of solid tumors harboring these deficiencies to explore therapeutic interventions that can bypass ICB resistance. Here, we investigated the combination of the epigenetic modulator entinostat and the tumor-targeted immunocytokine NHS-IL12 in three different murine tumor models resistant to αPD-1/αPD-L1 (anti-programmed cell death protein 1/anti-programmed death ligand 1) and harboring MHC-I, APM, and IFN-γ response deficiencies and differing tumor mutational burden (TMB).

          Methods

          Entinostat and NHS-IL12 were administered to mice bearing TC-1/a9 (lung, HPV16 E6/E7 +), CMT.64 lung, or RVP3 sarcoma tumors. Antitumor efficacy and survival were monitored. Comprehensive tumor microenvironment (TME) and spleen analysis of immune cells, cytokines, and chemokines was performed. Additionally, whole transcriptomic analysis was carried out on TC-1/a9 tumors. Cancer Genome Atlas (TCGA) datasets were analyzed for translational relevance.

          Results

          We demonstrate that the combination of entinostat and NHS-IL12 therapy elicits potent antitumor activity and survival benefit through prolonged activation and tumor infiltration of cytotoxic CD8 + T cells, across αPD-1/αPD-L1 refractory tumors irrespective of TMB, including in the IFN-γ signaling-impaired RVP3 tumor model. The combination therapy promoted M1-like macrophages and activated antigen-presenting cells while decreasing M2-like macrophages and regulatory T cells in a tumor-dependent manner. This was associated with increased levels of IFN-γ, IL-12, chemokine (C-X-C motif) ligand 9 (CXCL9), and CXCL13 in the TME. Further, the combination therapy synergized to promote MHC-I and APM upregulation, and enrichment of JAK/STAT (janus kinase/signal transducers and activators of transcription), IFN-γ-response and antigen processing-associated pathways. A biomarker signature of the mechanism involved in these studies is associated with patients’ overall survival across multiple tumor types.

          Conclusions

          Our findings provide a rationale for combining the tumor-targeting NHS-IL12 with the histone deacetylase inhibitor entinostat in the clinical setting for patients unresponsive to αPD-1/αPD-L1 and/or with innate deficiencies in tumor MHC-I, APM expression, and IFN-γ signaling.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          TIMER2.0 for analysis of tumor-infiltrating immune cells

          Abstract Tumor progression and the efficacy of immunotherapy are strongly influenced by the composition and abundance of immune cells in the tumor microenvironment. Due to the limitations of direct measurement methods, computational algorithms are often used to infer immune cell composition from bulk tumor transcriptome profiles. These estimated tumor immune infiltrate populations have been associated with genomic and transcriptomic changes in the tumors, providing insight into tumor–immune interactions. However, such investigations on large-scale public data remain challenging. To lower the barriers for the analysis of complex tumor–immune interactions, we significantly improved our previous web platform TIMER. Instead of just using one algorithm, TIMER2.0 (http://timer.cistrome.org/) provides more robust estimation of immune infiltration levels for The Cancer Genome Atlas (TCGA) or user-provided tumor profiles using six state-of-the-art algorithms. TIMER2.0 provides four modules for investigating the associations between immune infiltrates and genetic or clinical features, and four modules for exploring cancer-related associations in the TCGA cohorts. Each module can generate a functional heatmap table, enabling the user to easily identify significant associations in multiple cancer types simultaneously. Overall, the TIMER2.0 web server provides comprehensive analysis and visualization functions of tumor infiltrating immune cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis

            Abstract Introduced in 2017, the GEPIA (Gene Expression Profiling Interactive Analysis) web server has been a valuable and highly cited resource for gene expression analysis based on tumor and normal samples from the TCGA and the GTEx databases. Here, we present GEPIA2, an updated and enhanced version to provide insights with higher resolution and more functionalities. Featuring 198 619 isoforms and 84 cancer subtypes, GEPIA2 has extended gene expression quantification from the gene level to the transcript level, and supports analysis of a specific cancer subtype, and comparison between subtypes. In addition, GEPIA2 has adopted new analysis techniques of gene signature quantification inspired by single-cell sequencing studies, and provides customized analysis where users can upload their own RNA-seq data and compare them with TCGA and GTEx samples. We also offer an API for batch process and easy retrieval of the analysis results. The updated web server is publicly accessible at http://gepia2.cancer-pku.cn/.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study

              Tumour mutational burden (TMB) has been retrospectively correlated with response to immune checkpoint blockade. We prospectively explored the association of high tissue TMB (tTMB-high) with outcomes in ten tumour-type-specific cohorts from the phase 2 KEYNOTE-158 study, which assessed the anti-PD-1 monoclonal antibody pembrolizumab in patients with selected, previously treated, advanced solid tumours.
                Bookmark

                Author and article information

                Journal
                J Immunother Cancer
                J Immunother Cancer
                jitc
                jitc
                Journal for Immunotherapy of Cancer
                BMJ Publishing Group (BMA House, Tavistock Square, London, WC1H 9JR )
                2051-1426
                2022
                28 June 2022
                : 10
                : 6
                : e004561
                Affiliations
                [1]departmentCenter for Immuno-Oncology, Center for Cancer Research , National Cancer Institute , Bethesda, Maryland, USA
                Author notes
                [Correspondence to ] Dr Jeffrey Schlom; schlomj@ 123456mail.nih.gov
                Author information
                http://orcid.org/0000-0001-7497-9459
                http://orcid.org/0000-0002-7115-3878
                http://orcid.org/0000-0001-6011-2061
                http://orcid.org/0000-0001-9192-875X
                http://orcid.org/0000-0002-0445-4486
                http://orcid.org/0000-0001-7932-4072
                http://orcid.org/0000-0002-2392-8122
                Article
                jitc-2022-004561
                10.1136/jitc-2022-004561
                9240938
                35764364
                f9887921-0507-4b79-90aa-91cc568f068a
                © Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

                This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See http://creativecommons.org/licenses/by-nc/4.0/.

                History
                : 03 May 2022
                Funding
                Funded by: Intramural Research Program of the Center for Cancer Research, National Cancer Institute, NIH;
                Award ID: Strategies for Cancer Immunotherapy Development: P
                Funded by: Cooperative Research and Development Agreement between the National Cancer Institute and Syndax Pharmaceuticals, Inc.;
                Award ID: CRADA #03121
                Funded by: Cooperative Research and Development Agreement between the National Cancer Institute and EMD Serono, Inc.;
                Award ID: #02666
                Categories
                Clinical/Translational Cancer Immunotherapy
                1506
                2435
                Original research
                Custom metadata
                unlocked

                immunotherapy,tumor microenvironment,cytokines,programmed cell death 1 receptor,combined modality therapy

                Comments

                Comment on this article