Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effect of aerobic exercise and low-carbohydrate high-fat diet on glucose tolerance and android/gynoid fat in overweight/obese women: A randomized controlled trial

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The study was designed to compare the effects of weight loss induced by a low-carbohydrate-high-fat diet or a normal diet, with and without exercise, on glucose tolerance measured as area under the curve (AUC), and android (A) and gynoid (G) fat distribution. The study was registered at clinicaltrials.gov; NCT04100356. In total, 57 women classified as overweight or obese (age 40 ± 3.5 years, body mass index 31.1 ± 2.6 kg/m 2) were randomly assigned and completed a 10-week intervention using a low-carbohydrate high-fat diet or a normal diet, with or without aerobic interval exercise. An equal deficit of 700 kcal/day was prescribed, either restricting the diet only, or moderately restricting diet and including three 50-min high-intensity bicycle sessions per week. There were thus four groups: normal diet (NORM); low-carbohydrate-high-fat diet (LCHF); normal diet with exercise (NORM-EX); and low-carbohydrate-high-fat diet with exercise (LCHF-EX). Linear mixed models was used to assess differences between groups. With all groups pooled, the intervention resulted in a weight loss of 6.7 ± 2.5% ( p < 0.001). The intervention did not result in differences between groups in AUC glucose, nor in fasting glucose or indicis for insulin resistance such as Homeostatic Model Assessment, Matsuda Insulin Sensitivity Index, insulinogenic index and disposition index. Post-intervention android fat was lower in LCHF than NORM (3,223 ± 727 vs. 2,533 ± 535 g, p = 0.041). LCHF reached a lower A/G ratio than NORM (0.94 ± 0.12 vs. 1.04 ± 0.09, p = 0.011) and LCHF-EX (0.94 ± 0.12 vs. 1.09 ± 0.09, p < 0.001) after the intervention. LCHF resulted in lower android fat mass compared to NORM and the lowest A/G ratio compared to the other matched groups, but with no accompanying improvement in AUC glucose. In conclusion, although all groups achieved improvements in glucose tolerance, no superior effect was observed with the LCHF diet, neither with nor without exercise.

          Related collections

          Most cited references87

          • Record: found
          • Abstract: found
          • Article: not found

          IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045

          To provide global, regional, and country-level estimates of diabetes prevalence and health expenditures for 2021 and projections for 2045.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp.

            Several methods have been proposed to evaluate insulin sensitivity from the data obtained from the oral glucose tolerance test (OGTT). However, the validity of these indices has not been rigorously evaluated by comparing them with the direct measurement of insulin sensitivity obtained with the euglycemic insulin clamp technique. In this study, we compare various insulin sensitivity indices derived from the OGTT with whole-body insulin sensitivity measured by the euglycemic insulin clamp technique. In this study, 153 subjects (66 men and 87 women, aged 18-71 years, BMI 20-65 kg/m2) with varying degrees of glucose tolerance (62 subjects with normal glucose tolerance, 31 subjects with impaired glucose tolerance, and 60 subjects with type 2 diabetes) were studied. After a 10-h overnight fast, all subjects underwent, in random order, a 75-g OGTT and a euglycemic insulin clamp, which was performed with the infusion of [3-3H]glucose. The indices of insulin sensitivity derived from OGTT data and the euglycemic insulin clamp were compared by correlation analysis. The mean plasma glucose concentration divided by the mean plasma insulin concentration during the OGTT displayed no correlation with the rate of whole-body glucose disposal during the euglycemic insulin clamp (r = -0.02, NS). From the OGTT, we developed an index of whole-body insulin sensitivity (10,000/square root of [fasting glucose x fasting insulin] x [mean glucose x mean insulin during OGTT]), which is highly correlated (r = 0.73, P < 0.0001) with the rate of whole-body glucose disposal during the euglycemic insulin clamp. Previous methods used to derive an index of insulin sensitivity from the OGTT have relied on the ratio of plasma glucose to insulin concentration during the OGTT. Our results demonstrate the limitations of such an approach. We have derived a novel estimate of insulin sensitivity that is simple to calculate and provides a reasonable approximation of whole-body insulin sensitivity from the OGTT.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study.

              Visceral adipose tissue (VAT) compartments may confer increased metabolic risk. The incremental utility of measuring both visceral and subcutaneous abdominal adipose tissue (SAT) in association with metabolic risk factors and underlying heritability has not been well described in a population-based setting. Participants (n=3001) were drawn from the Framingham Heart Study (48% women; mean age, 50 years), were free of clinical cardiovascular disease, and underwent multidetector computed tomography assessment of SAT and VAT volumes between 2002 and 2005. Metabolic risk factors were examined in relation to increments of SAT and VAT after multivariable adjustment. Heritability was calculated using variance-components analysis. Among both women and men, SAT and VAT were significantly associated with blood pressure, fasting plasma glucose, triglycerides, and high-density lipoprotein cholesterol and with increased odds of hypertension, impaired fasting glucose, diabetes mellitus, and metabolic syndrome (P range < 0.01). In women, relations between VAT and risk factors were consistently stronger than in men. However, VAT was more strongly correlated with most metabolic risk factors than was SAT. For example, among women and men, both SAT and VAT were associated with increased odds of metabolic syndrome. In women, the odds ratio (OR) of metabolic syndrome per 1-standard deviation increase in VAT (OR, 4.7) was stronger than that for SAT (OR, 3.0; P for difference between SAT and VAT < 0.0001); similar differences were noted for men (OR for VAT, 4.2; OR for SAT, 2.5). Furthermore, VAT but not SAT contributed significantly to risk factor variation after adjustment for body mass index and waist circumference (P < or = 0.01). Among overweight and obese individuals, the prevalence of hypertension, impaired fasting glucose, and metabolic syndrome increased linearly and significantly across increasing VAT quartiles. Heritability values for SAT and VAT were 57% and 36%, respectively. Although both SAT and VAT are correlated with metabolic risk factors, VAT remains more strongly associated with an adverse metabolic risk profile even after accounting for standard anthropometric indexes. Our findings are consistent with the hypothesized role of visceral fat as a unique, pathogenic fat depot. Measurement of VAT may provide a more complete understanding of metabolic risk associated with variation in fat distribution.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                24 January 2023
                2023
                : 14
                : 1056296
                Affiliations
                [1] 1 Institute of Physical Performance , Norwegian School of Sport Sciences , Oslo, Norway
                [2] 2 Department of Health Sciences , Kristiania University College , Oslo, Norway
                [3] 3 Department of Sport Science and Physical Education , University of Agder , Kristiansand, Norway
                [4] 4 Department of Nutrition , Exercise and Sports , University of Copenhagen , Frederiksberg, Denmark
                [5] 5 Department of Sports and Physical Education , Inland Norway University of Applied Sciences , Elverum, Norway
                [6] 6 Institute of Basic Medical Sciences , Department of Nutrition , Faculty of Medicine University of Oslo , Oslo, Norway
                Author notes

                Edited by: Lauren Sparks, Translational Research Institute, United States

                Reviewed by: Siddhartha S. Angadi, University of Virginia, United States

                Hidetaka Hamasaki, Hamasaki Clinic, Japan

                Stefan Kabisch, Charité Universitätsmedizin Berlin, Germany

                *Correspondence: Thorhildur Ditta Valsdottir, ditta.valsdottir@ 123456kristiania.no
                [ † ]

                ORCID:Thorhildur Ditta Valsdottir, orcid.org/0000-0003-1132-2868

                This article was submitted to Exercise Physiology, a section of the journal Frontiers in Physiology

                Article
                1056296
                10.3389/fphys.2023.1056296
                9902511
                01ef2f9e-7225-42e5-969d-77bc50f2ce48
                Copyright © 2023 Valsdottir, Øvrebø, Kornfeldt, Litleskare, Johansen, Henriksen and Jensen.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 28 September 2022
                : 09 January 2023
                Funding
                The project was funded by Atlantis Medical University College and Norwegian School of Sports Sciences as a part of a PhD education.
                Categories
                Physiology
                Original Research

                Anatomy & Physiology
                low-carbohydrate high-fat diet,exercise,cardiorespiratory fitness,glucose tolerance,insulin resistance,android/gynoid fat,homa-ir,matsuda isi

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content240

                Most referenced authors1,217