8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      G-Quadruplex Identification in the Genome of Protozoan Parasites Points to Naphthalene Diimide Ligands as New Antiparasitic Agents

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          G-quadruplexes (G4) are DNA secondary structures that take part in the regulation of gene expression. Putative G4 forming sequences (PQS) have been reported in mammals, yeast, bacteria, and viruses. Here, we present PQS searches on the genomes of T. brucei, L. major , and P. falciparum. We found telomeric sequences and new PQS motifs. Biophysical experiments showed that EBR1, a 29 nucleotide long highly repeated PQS in T. brucei, forms a stable G4 structure. G4 ligands based on carbohydrate conjugated naphthalene diimides (carb-NDIs) that bind G4’s including hTel could bind EBR1 with selectivity versus dsDNA. These ligands showed important antiparasitic activity. IC 50 values were in the nanomolar range against T. brucei with high selectivity against MRC-5 human cells. Confocal microscopy confirmed these ligands localize in the nucleus and kinetoplast of T. brucei suggesting they can reach their potential G4 targets. Cytotoxicity and zebrafish toxicity studies revealed sugar conjugation reduces intrinsic toxicity of NDIs.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique.

          A rapid, semiautomated microdilution method was developed for measuring the activity of potential antimalarial drugs against cultured intraerythrocytic asexual forms of the human malaria parasite Plasmodium falciparum. Microtitration plates were used to prepare serial dilutions of the compounds to be tested. Parasites, obtained from continuous stock cultures, were subcultured in these plates for 42 h. Inhibition of uptake of a radiolabeled nucleic acid precursor by the parasites served as the indicator of antimalarial activity. Results of repeated measurements of activity with chloroquine, quinine, and the investigational new drug mefloquine demonstrated that the method is sensitive and precise. Several additional antimalarial drugs and compounds of interest were tested in vitro, and the results were consistent with available in vivo data. The use of P. falciparum isolates with known susceptibility to antimalarial drugs also permitted evaluation of the cross-resistance potential of each compound tested. The applications and expectations of this new test system within a drug development program are discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Major transcript of the frameshifted coxII gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA.

            The mitochondrial cytochrome oxidase (cox) subunit II gene from trypanosomes contains a frameshift at amino acid 170. This gene is highly conserved in different trypanosome species, suggesting that it is functional. Sequence determination of coxII transcripts of T. brucei and C. fasciculata reveals four extra, reading frame-restoring nucleotides at the frameshift position that are not encoded in the DNA. Southern blot analysis of DNA of both trypanosome species failed to show the existence of a second version of the coxII gene. We conclude, therefore, that the extra nucleotides are added during or after transcription of the frameshift gene by an RNA-editing process.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Following G-quartet formation by UV-spectroscopy.

              Oligodeoxynucleotides which include stretches of guanines form a well-known tetrameric structure. We show that the recording of reversible absorbance changes at 295 nm allows to precisely monitor intramolecular guanine (G)-quartet formation and dissociation. Accurate Tm and thermodynamic values could be easily extracted from the data, whereas classical recordings at 260 nm led to a much larger uncertainty and in extreme cases, to completely inaccurate measurements. This inverted denaturation profile was observed for all G-quartet-forming oligonucleotides studied so far. This technique is very useful in all cases where intramolecular or intermolecular quadruplex formation is suspected.
                Bookmark

                Author and article information

                Journal
                J Med Chem
                J. Med. Chem
                jm
                jmcmar
                Journal of Medicinal Chemistry
                American Chemical Society
                0022-2623
                1520-4804
                11 January 2018
                08 February 2018
                : 61
                : 3
                : 1231-1240
                Affiliations
                []Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina, CSIC , PTS Granada, Avda. del Conocimiento, 17, 18016 Armilla, Granada, Spain
                []ARNA Laboratory, Université de Bordeaux, Inserm U1212, CNRS UMR5320, Institut Européen de Chimie Biologie (IECB), 2 Rue Robert Escarpit, 33607 Pessac, France
                [§ ]Department of Chemistry, University of Pavia , Via Taramelli 10, 27100 Pavia, Italy
                []Dynamique des Interactions Membranaires Normales et Pathologiques, CNRS UMR 5235, Université de Montpellier, 34095 Montpellier, France
                []CNRS, 5290, IRD 224, University of Montpellier (UMR “MiVEGEC”), INSERM, 34394 Montpellier, France
                [# ]Institute of Biophysics , AS CR, v.v.i. Kralovopolska 135, 612 65 Brno, Czech Republic
                Author notes
                [* ]J.M.P.-V.: phone, +34-958181685; e-mail, josepv@ 123456ipb.csic.es .
                [* ]J.C.M.: phone, +34-958181644; e-mail, jcmorales@ 123456ipb.csic.es .
                Article
                10.1021/acs.jmedchem.7b01672
                6148440
                29323491
                01d15401-59c7-419b-a080-e738a66bd17f
                Copyright © 2018 American Chemical Society

                This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

                History
                : 15 November 2017
                Categories
                Article
                Custom metadata
                jm7b01672
                jm-2017-01672u

                Pharmaceutical chemistry
                Pharmaceutical chemistry

                Comments

                Comment on this article