32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Heparanase induced by advanced glycation end products (AGEs) promotes macrophage migration involving RAGE and PI3K/AKT pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Advanced glycation end products (AGEs), inflammatory-associated macrophage migration and accumulation are crucial for initiation and progression of diabetic vascular complication. Enzymatic activity of heparanase (HPA) is implicated strongly in dissemination of metastatic tumor cells and cells of the immune system. In addition, HPA enhances the phosphorylation of selected signaling molecules including AKT pathway independent of enzymatic activity. However, virtually nothing is presently known the role of HPA during macrophage migration exposed to AGEs involving signal pathway.

          Methods

          These studies were carried out in Ana-1 macrophages. Macrophage viability was measured by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays. HPA and AKT protein expression in macrophages are analysed by Western blotting and HPA mRNA expression by real time quantitative RT-PCR. Release of HPA was determined by ELISA. Macrophage migration was assessed by Transwell assays.

          Results

          HPA protein and mRNA were found to be increased significantly in AGEs-treated macrophages. Pretreatment with anti-HPA antibody which recognizes the nonenzymatic terminal of HPA prevented AGEs-induced AKT phosphorylation and macrophage migration. LY294002 (PI3k/AKT inhibitor) inhibited AGEs-induced macrophage migration. Furthermore, pretreatment with anti-receptor for advanced glycation end products (RAGE) antibody attenuated AGEs-induced HPA expression, AKT phosphorylation and macrophage migration.

          Conclusions

          These data indicate that AGEs-induced macrophage migration is dependent on HPA involving RAGE-HPA-PI3K/AKT pathway. The nonenzymatic activity of HPA may play a key role in AGEs-induced macrophage migration associated with inflammation in diabetic vascular complication.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Regular physical exercise training assists in preventing type 2 diabetes development: focus on its antioxidant and anti-inflammatory properties

          Diabetes mellitus has emerged as one of the main alarms to human health in the 21st century. Pronounced changes in the human environment, behavior and lifestyle have accompanied globalization, which resulted in escalating rates of both obesity and diabetes, already described as diabesity. This pandemic causes deterioration of life quality with high socio-economic costs, particularly due to premature morbidity and mortality. To avoid late complications of type 2 diabetes and related costs, primary prevention and early treatment are therefore necessary. In this context, effective non-pharmacological measures, such as regular physical activity, are imperative to avoid complications, as well as polymedication, which is associated with serious side-effects and drug-to-drug interactions. Our previous work showed, in an animal model of obese type 2 diabetes, the Zucker Diabetic Fatty (ZDF) rat, that regular and moderate intensity physical exercise (training) is able, per se, to attenuate insulin resistance and control glycaemia, dyslipidaemia and blood pressure, thus reducing cardiovascular risk, by interfering with the pathophysiological mechanisms at different levels, including oxidative stress and low-grade inflammation, which are key features of diabesity. This paper briefly reviews the wide pathophysiological pathways associated with Type 2 diabetes and then discusses in detail the benefits of training therapy on glycaemic control and on cardiovascular risk profile in Type 2 diabetes, focusing particularly on antioxidant and anti-inflammatory properties. Based on the current knowledge, including our own findings using an animal model, it is concluded that regular and moderate intensity physical exercise (training), due to its pleiotropic effects, could replace, or at least reduce, the use of anti-diabetic drugs, as well as of other drugs given for the control of cardiovascular risk factors in obese type 2 diabetic patients, working as a physiological "polypill".
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Heparanase Is Essential for the Development of Diabetic Nephropathy in Mice

            Diabetic nephropathy (DN) is the major life-threatening complication of diabetes. Abnormal permselectivity of glomerular basement membrane (GBM) plays an important role in DN pathogenesis. Heparanase is the predominant enzyme that degrades heparan sulfate (HS), the main polysaccharide of the GBM. Loss of GBM HS in diabetic kidney was associated with increased glomerular expression of heparanase; however, the causal involvement of heparanase in the pathogenesis of DN has not been demonstrated. We report for the first time the essential involvement of heparanase in DN. With the use of Hpse-KO mice, we found that deletion of the heparanase gene protects diabetic mice from DN. Furthermore, by investigating the molecular mechanism underlying induction of the enzyme in DN, we found that transcription factor early growth response 1 (Egr1) is responsible for activation of heparanase promoter under diabetic conditions. The specific heparanase inhibitor SST0001 markedly decreased the extent of albuminuria and renal damage in mouse models of DN. Our results collectively underscore the crucial role of heparanase in the pathogenesis of DN and its potential as a highly relevant target for therapeutic interventions in patients with DN.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Activation of Endoplasmic Reticulum Stress by Hyperglycemia Is Essential for Müller Cell–Derived Inflammatory Cytokine Production in Diabetes

              Inflammation plays an important role in diabetes-induced retinal vascular leakage. The purpose of this study is to examine the role of endoplasmic reticulum (ER) stress and the signaling pathway of ER stress–induced activating transcription factor 4 (ATF4) in the regulation of Müller cell–derived inflammatory mediators in diabetic retinopathy. In diabetic animals, elevated ER stress markers, ATF4, and vascular endothelial growth factor (VEGF) expression were partially localized to Müller cells in the retina. In cultured Müller cells, high glucose induced a time-dependent increase of ER stress, ATF4 expression, and inflammatory factor production. Inducing ER stress or overexpressing ATF4 resulted in elevated intracellular adhesion molecule 1 and VEGF proteins in Müller cells. In contrast, alleviation of ER stress or blockade of ATF4 activity attenuated inflammatory gene expression induced by high glucose or hypoxia. Furthermore, we found that ATF4 regulated the c-Jun NH2-terminal kinase pathway resulting in VEGF upregulation. ATF4 was also required for ER stress–induced and hypoxia-inducible factor-1α activation. Finally, we showed that administration of chemical chaperone 4-phenylbutyrate or genetic inhibition of ATF4 successfully attenuated retinal VEGF expression and reduced vascular leakage in mice with STZ-induced diabetes. Taken together, our data indicate that ER stress and ATF4 play a critical role in retinal inflammatory signaling and Müller cell–derived inflammatory cytokine production in diabetes.
                Bookmark

                Author and article information

                Contributors
                Journal
                Cardiovasc Diabetol
                Cardiovasc Diabetol
                Cardiovascular Diabetology
                BioMed Central
                1475-2840
                2013
                26 February 2013
                : 12
                : 37
                Affiliations
                [1 ]Department of Nephrology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
                [2 ]School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China
                [3 ]Department of Nephrology, Huashan Hospital, Fudan University, Shanghai 200240, China
                Article
                1475-2840-12-37
                10.1186/1475-2840-12-37
                3637127
                23442498
                01ab8f51-3e7f-4732-9c4c-8bac8deb5fce
                Copyright © 2013 Qin et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 January 2013
                : 18 February 2013
                Categories
                Original Investigation

                Endocrinology & Diabetes
                advanced glycation end products,macrophage migration,diabetes,rage,heparanase,pi3k/akt

                Comments

                Comment on this article