0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Characterization of Semenogelin II and its Molecular interaction with Prostate-Specific Antigen and Protein C Inhibitor

      , , ,
      European Journal of Biochemistry
      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          A kallikrein-like serine protease in prostatic fluid cleaves the predominant seminal vesicle protein.

          H Lilja (1985)
          A 33-kD glycoprotein, known as the "prostate-specific antigen," was purified to homogeneity from human seminal plasma. The prostatic protein was identified as a serine protease, and its NH2-terminal sequence strongly suggests that it belongs to the family of glandular kallikreins. The structural protein of human seminal coagulum, the predominant protein in seminal vesicle secretion, was rapidly cleaved by the prostatic enzyme, which suggests that this seminal vesicle protein may serve as the physiological substrate for the protease. The prostatic enzyme hydrolyzed arginine- and lysine-containing substrates with a distinct preference for the former. All synthetic substrates tested were poor substrates for the enzyme. Synthetic Factor XIa substrate (pyro-glutamyl-prolyl-arginine-p-nitroanilide), and the synthetic kallikrein substrate (H-D-prolyl-phenylalanyl-arginine-p-nitroanilide) were hydrolyzed with maximum specific activities at 23 degrees C of 79 and 34 nmol/min per mg and Km values of 1.0 and 0.45 mM, respectively. Synthetic substrates for plasmin, chymotrypsin, and elastase were either not hydrolyzed by the enzyme at all, or only hydrolyzed very slowly.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Enzymatic activity of prostate-specific antigen and its reactions with extracellular serine proteinase inhibitors.

            Prostate-specific antigen (PSA) is one of the three most abundant prostatic-secreted proteins in human semen. It is a serine proteinase that, in its primary structure, manifests extensive similarities with that of the Arg-restricted glandular kallikrein-like proteinases. When isolated from semen by the addition of chromatography on aprotinin-Sepharose to a previously described procedure, PSA displayed chymotrypsin-like activity and cleaved semenogelin and the semenogelin-related proteins in a rapid and characteristic pattern, but had no trypsin-like activity. About one third of the purified protein was found to be enzymatically inactive, due to cleavage carboxy-terminal of Lys145. Active PSA formed SDS-stable complexes with alpha 1-antichymotrypsin, alpha 2-macroglobulin-analogue pregnancy zone protein. PSA formed inhibitory complexes with alpha 1-antichymotrypsin at a molar ratio of 1:1, a reaction in which PSA cleaved the inhibitor in a position identical to that reported from the reaction between chymotrypsin and alpha 1-antichymotrypsin. The formation of stable complexes between PSA and alpha 1-antichymotrypsin occurred at a much slower rate than that between chymotrypsin and alpha 1-antichymotrypsin, and at a similar or slightly slower rate than that between PSA and alpha 2-macroglobulin. When added to normal blood plasma in vitro, active PSA formed stable complexes both with alpha 2-macroglobulin and alpha 1-antichymotrypsin. This complex formation may be a crucial determinant of the turnover of active PSA in intercellular fluid or blood plasma in vivo.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Protein C inhibitor is a potent inhibitor of the thrombin-thrombomodulin complex.

              Protein C inhibitor (PCI), a plasma serine protease inhibitor, inhibits several proteases including the anticoagulant enzyme, activated protein C (APC), and the coagulation enzymes, thrombin and factor Xa. Previous studies have shown that thrombin and APC are inhibited at similar rates by PCI and that heparin accelerates PCI inhibition of both enzymes more than 20-fold. We now demonstrate that the thrombin-binding proteoglycan, rabbit thrombomodulin, accelerates inhibition of thrombin by PCI approximately equal to 140-fold (k2 = 2.4 x 10(6) in the presence of TM compared to 1.7 x 10(4) M-1 S-1 in the absence of TM). Most of this effect is mediated by protein-protein interactions since the active fragment of TM composed of epidermal growth factor-like domains 4-6 (TM 4-6) accelerates inhibition by PCI approximately equal to 59-fold (k2 = 1.0 x 10(6) M-1 S-1). The mechanism by which TM alters reactivity with PCI appears to reside in part in an alteration of the S2 specificity pocket. Replacing Phe353 with Pro at the P2 position in the reactive loop of PCI yields a mutant that inhibits thrombin better in the absence of TM (k2 = 6.3 x 10(5) M-1 S-1), but TM 4-6 enhances inhibition by this mutant approximately equal to 9-fold (k2 = 5.8 x 10(6) M-1 S-1) indicating that TM alleviates the inhibitory effect of the less favored Phe residue. These results indicate that PCI is a potent inhibitor of the protein C anticoagulant pathway at the levels of both zymogen activation and enzyme inhibition.
                Bookmark

                Author and article information

                Journal
                European Journal of Biochemistry
                Eur J Biochem
                Wiley
                0014-2956
                1432-1033
                May 15 1996
                May 15 1996
                : 238
                : 1
                : 88-96
                Article
                10.1111/j.1432-1033.1996.0088q.x
                019a36de-6445-4eea-8cf8-9f2ffc334b86
                © 1996

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article